红色风化壳微结构特征

红色风化壳微结构特征,第1张

目前,关于土体微观结构的名词术语繁多,分类混乱,这可能是由于土的类型多、成因复杂多样造成的。然而,如果人们缺乏对土体结构-成因的深入研究,片面追求名词术语的新颖,把不同成因土的特定的结构名词、术语拿来相互混用,那么势必要造成混乱。因此,当前首要的任务应该是深入进行各类土的结构-成因研究,以解决工程实践问题为准则,不一定强求非必须有“统一”的结构分类方案不可。

1.颗粒组成和形态

恰当和确切地描述红色风化壳的颗粒是比较困难的,因为在不同放大倍数(×100~20000)SEM视域内,土都是由大大小小不同颗粒状物质(并非自形晶的片状晶体)组成的。但是,为了论述方便,参考土粒组的划分,可进行如下的分类;把小于1μm的极细粘粒称为基质;1~2μm称为细粘粒;2~5μm的称为粗粘粒;5~10μm以及少数大于10μm的称为细粉粒级斑晶。

图2-4 图版Ⅱ-12中三水铝石的EDAX谱线图

颗粒:指大于1μm的颗粒及细小斑晶。它们大多都具有非常明显的边界和轮廓,绝大多数呈他形,所以很难据形态来确定其矿物成分;少数为自形,如曲边状及束状的伊利石、长条形的板钛矿和具六角形断面的高岭石、具很好几何形态的水铝英石等。它们绝大多数为溶蚀交代白云石、方解石等粒状矿物而形成的交代变晶矿物,少数为孔隙中淀积形成的自形晶矿物。借助于微区EDAX分析证明,它们多半是单矿物,如絮状的多水高岭石及粒状的高岭石(K)、伊利石(I)、绿泥石(Ch)、次生石英(Q)、板钛矿(Ti)、水铝英石(G),少量方解石(C)、白云石(D)以及赤铁矿、针铁矿等铁矿物(Fe),在视域内还可看见少数交代尚不完全的或正在互相转化的矿物,如伊利石交代方解石(I→C),白云石变为高岭石(D→K),高岭石交代方解石(K→C)以及高岭石转变为三水铝石的情况(K→G)等。另外,研究还表明,有些单矿物晶体的表面,往往附着其他更细小粘土矿物,以致在原状土样的SEM观察中,发现不了这些晶体,例如:对安顺白云岩红色风化壳表层土Pnl-1号样进行了加入分散剂后的沉淀物的分析,经过这种处理其干燥样在SEM下观察,可见到晶形完好的三水铝石(图版Ⅲ-5,图2-4)。

基质:由小于1μm的极微小的颗粒组成,呈粒状、片状。它们或是杂乱地充填于颗粒之间,或是整个样品由基质组成,构成致密基质结构或基质斑状结构(图版Ⅲ-6、图版Ⅲ-7),当土体裂隙之间充填这些细腻基质时,则可见矿物小片呈定向排列的情况。

2.结构连接

红色风化壳的结构连接以粘土基质胶结(简称粘基胶结,图版Ⅲ-6)以及接触胶结为主,少数样为粘基及铁质共同胶结,接触不紧密,靠吸附水膜黏聚力连接起来。用比重计法进行颗粒分析,未加入分散剂的样品,虽经浸泡、研磨和煮沸,但80%~90%的粒径均大于0.01mm,主要属粗粉粒土,说明这些粗粉粒土是水稳性的,但加入六偏磷酸钠分散剂后,50%~55%左右的颗粒变为粘粒级,而且细粘粒占35%~45%,说明红色风化壳土体在自然状态下,仍是以粒团方式存在,分散剂中的高浓度低价钠阳离子,交换了水膜中吸附的高价阳离子,使水膜加厚,因而破坏了粒团的结构连接而使其分散。这一现象说明粒团中粘粒的连接仍是以水膜连接为主。另外,专门取了两种粘土团块进行了SEM及EDAX分析,目的是查明铁质胶结在粒团所起的作用,一类是靠近石灰岩表面附近的被黑色铁、锰质胶结的团块,它们的颗粒和基质与同类土相同,粒间的铁、锰质氧化物或氢氧化物呈蜂巢状连接非常显著(图版Ⅳ-1);另一类是白云岩红色风化壳土体中砖红色铁质胶结团块,粒内、粒间孔隙中球状及葡萄状赤铁矿的胶结非常明显(图版Ⅳ-2),粒间孔隙发育。由此可见,粒团内粘粒的胶结仍是以水膜连接为主的,只是在铁锰质粘土团块中才以铁、锰质胶结。

3.孔隙特征

采用2010型压汞仪对遵义剖面土的孔隙进行了测定,结果见图2-5、表2-2。为说明问题,把土的孔隙分为大孔(>3.7μm)、中孔(3.7~0.37μm)、小孔(0.37~0.037μm)和微孔(<0.037μm)4 类。图表说明,土中孔隙以微孔隙为主,占50%以上,而且孔隙中值也全部落在微孔区间。ZZ 9 号样靠近地表,由于受到卸荷作用等影响,孔隙总体积(141.76mm3/g),明显大于其他3 个样品,随样品埋藏深度的增加,孔隙总体积数值依次增大,与土的含水量及土状态随深度的变化规律相符合。土中微孔和小孔占主要,说明以粒团内孔隙为主。

表2-2 遵义石灰岩红色风化壳各类孔隙百分含量统计表(%)

图2-5 遵义石灰岩红色风化壳土体孔隙特征曲线图

4.结构类型

近十多年来,作者利用扫描电镜(SEM,KYKY-1000型)及其辅助手段——X射线能谱(EDAX,美国TN-5400型)对碳酸盐岩红色风化壳样品进行了大量的观察和分析,总共机时在数百小时以上,重点拍摄的SEM照片及其EDAX分析谱线也都在几百件以上。研究样品取自以石灰岩(贵州遵义,SEM照片上编号ZZ)和白云岩(贵州安顺,SEM照片上编号PN)为母岩的典型碳酸盐岩红色风化壳剖面,取样间距一般为1.5~2m或更密。

根据大量的SEM照片及EDAX谱线,初步划分了贵州安顺及遵义两地碳酸盐岩红色风化壳的微结构类型。由于篇幅所限,每种结构类型只引用了少量的SEM照片及EDAX谱线。需要说明的是,SEM的观察是大量的,而拍摄照片的仅仅是其中的一部分;EDAX能谱分析也是大量的,而打印出结果的也仅仅是其中的一部分。EDAX能谱既能对所拍照片的全部视域进行“全域分析”,也能对某一特定矿物局部视域进行“微区分析”。把进行过微区分析的部位都标以特定的矿物名称符号,如K代表高岭石或多水高岭石、I代表伊利石、Q代表石英、Fe代表含铁矿物、Mn代表含锰的矿物等。EDAX图谱只能给出某种矿物元素含量,在确定矿物名称时,除了考虑矿物的形态外,还参考了该样品的矿物X射线粉晶分析、红外光谱分析及差热分析资料等。

(1)叠片状结构(图版Ⅳ-3)

叠片主要由长条形的埃洛石(长度为1μm左右,厚度

图2-6 图版Ⅳ-3呈叠片状结构的埃洛石EDAX能谱

图2-7 图版Ⅳ-3高岭石全域DEAX能谱

(2)絮状结构(图版Ⅳ-4)

由极细小高岭石碎片堆叠成立体的不规则云朵状和絮状体(>5~10μm)组成,细心观察可发现±1μm的多边形高岭石晶体片,絮间有大小不一的,由

图2-8 图版Ⅳ-4中絮状高岭石EDAX能谱

图2-9 图版Ⅳ-4絮间孔隙铁质氧化物及碎片高岭石EDAX能谱

(3)粒斑状结构(图版Ⅳ-5)

斑状矿物主要为伊利石及多棱角次生石英等,斑状矿物之间为粒状的铁矿物(图2-10)。

图2-10 图版Ⅳ-5中斑状矿物之间铁矿物的EDAX能谱

(4)不规则斑块状结构(图版Ⅴ-1、图版Ⅴ-2)

不规则的斑块主要由伊利石(图2-11)组成,斑块间为不规则的孔隙,斑块5~10μm大小。把该照片与石灰岩的SEM照片(图版Ⅴ-2、图2-12)相比较,可见两者结构上何其相似,说明伊利石交代基岩中方解石的现象是形成该结构的基础。

图2-11 图版Ⅴ-2伊利石EDAX能谱

图2-12 图版Ⅴ-2中方解石EDAX能谱

(5)球粒状结构(图版Ⅴ-3、图版Ⅴ-4)

球粒状结构主要由毛粟状赤铁矿(图2-13)和球粒状针铁矿集合体组成(图2-14)。

图2-13 图版Ⅴ-3中毛粟状赤铁矿EDAX能谱

图2-14 图版Ⅴ-4中球粒状针铁矿集合体的EDAX能谱

(6)曲边-鳞片状结构(图版Ⅴ-5、图版Ⅴ-6)

为砖红色平行条纹状粘土的平行于条纹方向扫描的照片(图版Ⅴ-5),可见伊利石(图2-15)形成的典型的曲边-鳞片状结构。图版Ⅴ-6仍然为由伊利石形成的曲边-鳞片状结构(图2-16),与图版Ⅴ-5不同的是有一些矿物被伊利石交代形成粒状矿物,故能谱中钾的含量较高(图2-16)。

西藏特提斯海区侏罗系—白垩系界线钙质超微化石的研究,由于受自然条件、研究方 向,以及重视程度等方面的限制,钙质超微化石的研究基础相当薄弱,多少年来几乎是一 个空白区域。主要研究工作仅局限在中、晚白垩世之后。

藏南白垩纪—古近纪钙质超微化石的工作主要是由徐钰林等(徐钰林等,1992;徐 钰林,2000)所做,建立了相应的钙质超微化石带,并与Sissingh(1977)化石分带(CC 带)进行了对比。另外,钟石兰等(2000)对西藏南部岗巴地区白垩纪中期钙质超微化 石带和Cenomanian—Turonian界线钙质超微化石进行了研究,他们研究了两个剖面 Albian—Santonian钙质超微化石的分布。根据标志种的存在,识别出5个初现面事件,相 应地建立了6个钙质超微化石带,自下而上是Prediscosphaera cretacea带、Eiffellithus turriseiffeli带、Lithraphidites acutum带、Gartnerago obliquum带、Quadrum gartneri带、 Lucianorhabdus cayeuxii带。同时,通过洲际对比,建议以G.obliquum初现面作为划分本区 Cenomanian和Turonian界线的标志。

侏罗系与白垩系界线附近钙质超微生物的研究国外已有良好成果,主要工作和成果与 DSDP和ODP工作的进程密切相关,DSDP和ODP多个站位的钻心揭示界线地层保存良好 的钙质超微化石。相对而言,我国目前在该领域的研究尚属空白,该时段钙质超微生物地 层工作尚未开展,主要原因是该时期海相地层在国内的分布非常局限;其次,与DSDP和 ODP的地层样品相比较,国内仅有的该时期海相地层往往经过了剧烈的构造隆升运动和 风化剥蚀,个体微小的超微化石极易受到破坏,从而影响识别和分类。基于这样的前提条 件,迫切需要我国地质工作者进行更为深入细致的研究。

本次工作将采自江孜地区和浪卡子县羊卓雍错南岸的J—K界线地层的页岩,以及粉 砂质页岩样品,在实验室进行了深入研究,使用了多种方法,前后持续长达两年时间,经 历了多次的失败,仅用于显微镜下观察的载玻片就制作了500多片,最终发现了较为丰富 的钙质超微化石,弥补了我国J—K界线附近钙质超微生物的空白。

4.1.4.1 分析方法

钙质超微化石因为它们个体微小、结构纤细,无论采样、处理和观察研究的方法都和 一般微体化石不同。因此,下面对其处理和观察研究的方法作比较具体的介绍。

(1)用光学显微镜观察试样的分析方法

钙质超微化石样品的处理方法十分简便而又相当特殊。因为它们质地细弱、个体微 小,不可使用剧烈的化学药品,只能依靠重力分异等方法处理。处理过程主要为散样和富 集两大步骤。

1)散样:使样品充分散开,以便析出超微化石大小的颗粒。方法是:

(1)取碎成米粒大小的新鲜样品3 ~4粒,投入水中浸泡扩散,或先加二甲苯浸湿后投 入水中。最理想的样品是硬度小,甚至用指甲就能碾碎的软岩样品。如是已固结的坚硬岩 石,则需预先碎成两块,用改锥在其断面上削、刮下相当3~4颗米粒大小样品,在研钵 中碎成粉末,再投入装有20mL水的烧杯中浸泡。

(2)如果浸泡不易扩散,可将样品在水中煮沸,或者将浸入样品的小烧杯置于超声波震动 器上震动数分钟至二三十分钟,促使扩散。为不致因超声波震动造成化石破损,以周频为 28kHz、功率为5W较为合适。如果样品因粘土含量高而不易散开,可加入少量碳酸钠煮沸。

在整个处理过程中,要特别注意处理液的酸碱度。这一方面可避免具纤细钙质骨架的 超微化石不至于在pH值偏低的液体中溶解破坏,也因碱性介质能使粘土保持分散状态而 便于处理。最有利的为pH =9.4的溶液,为此,需要在用于处理的蒸馏水中加入小苏打 (每20L水中加4g)和碳酸钠(每20L水中加3g左右),使pH值达9.4。不宜直接使用 自来水或蒸馏水。

2)富集:去掉过粗、过细的颗粒和有机物质,使超微化石富集,是样品处理过程中 的重要步骤。

在样品中加入30%的双氧水(同时加小苏打以保持介质的pH值为9.4左右),加热 1h后如深色的样品变成浅灰,说明有机质已氧化。离心,倾出上覆液体,再加入Na2CO3 清洗,然后再行离心,如此重复多次。若有机质含量不高,此项步骤可省略。过粗的颗粒 可用筛选法或沉淀法去除。筛选法为将已扩散开的样品置于孔径为0.035mm或0.04mm (即300目)的细筛上冲洗,弃去留在筛上的粗粒物,取筛下冲去的液体作进一步分析。沉淀法为把已研碎的样品在小苏打水溶液中沉淀1~2min,弃去沉淀的粗粒物,取其上面 的液体作进一步分析。进一步的富集过程,可以有不同的方法,如烧杯法、滴管法、滤纸 法等(参见Stradner et al.,1961;Hay,1977;Haq,1978;纪文荣,1981;同济大学海 洋微体古生物室,1982;郝诒纯等,1993;Bown et al.,1998;Hardenbol et al.,1998; Bornemann et al.,2003)。

本次实验工作在中国地质大学(北京)海洋学院实验室进行,利用了多种当今最新、 最通用的钙质超微化石处理、制片与观察分析方法。

首先采用了通常的涂片方法。先取少量样品(米粒大小)放在载玻片上,滴1~2滴 蒸馏水,用一次性牙签或小塑料棒涂抹均匀,在可控温电热板(hot plate)上烘干后用中 性树脂胶封片,制作成可长久保存的玻片,封片胶使用加拿大树胶(折光率1.52),再 在偏光显微镜下放大1000倍(油浸镜头下)进行观察(Backman et al.,1983)。这种方 法简单快速,仅需要微量沉积物(一般用样约1g左右),对于确定有无化石与观察化石 群落组成而言这是一种非常快捷有效的方法。

由于J—K界线地层中的钙质超微化石在丰度、分异度及保存状态等方面均不如新生 代及现代大洋沉积物中的超微化石,使用上述一般处理方法制成的薄片几乎没有发现钙质 超微化石。之后,采用了多种浓缩沉淀的富集方法。现选取其中的一种方法详述步骤 如下:

A.试样的处理与薄片的制备

(1) 取岩样并切除外表污染部分,用其新鲜面。

(2) 对软质样品,则再将干净的岩样切割成许多小粒。或用螺丝刀或小刀刮取约20mL 的岩粉装入50mL的烧杯中。

(3) 对已固结的坚硬岩石,预先碎成两块,用改锥在其断面上削、刮下一些米粒大小 样品,在研钵中碎成粉末,再装入50mL的烧杯中。

(4) 往装有岩粉的烧杯中加入大约20mL缓冲后的蒸馏水(pH =9.4),用玻璃棒充分 搅拌,做成悬浊液。

(5)对浸泡不易扩散的样品,将浸入样品的小烧杯置于小型超声波震动器(周频为 28kHz、功率为5W)上震荡5s为宜,需要时可震荡数分钟甚至20~30min,促使扩散。

(6) 将搅拌好的悬浊液静置30s后,将上清液倒入第二个烧杯中;将剩下的浊液搅拌 均匀后,静置1~2min后,将上部清液倒入第三个烧杯中,制成中部清液;剩下的底部沉 淀物即为下部浊液。

(7) 用滴管分别吸取上部清液、中部清液、下部浊液分别滴到预先准备好的载玻片上。每一种液体从上到下不同层位分别取样,轻轻滴到5个载玻片上,使悬浊液均匀展布在整 个盖玻璃上。并将此载玻片放置到常温的电热板上。

(8) 加热电热板使悬浊液干燥。注意尽可能用低温(40~50℃),经过一定加热干燥时 间,以便悬浊液中不至于产生活动粒子的强烈对流。

(9) 在载玻片的中央,滴上一滴封入剂(折光率1.52)。

(10) 把盖玻片贴在载玻片上。贴盖玻片时将盖玻片带封入剂的面朝下,轻轻地放在载 玻片的试样上,用镊子或玻璃棒轻轻按一按盖玻片,使封入剂扩展到盖玻片的整个面上,这时要注意不要使盖玻片与载玻片之间留下气泡。

(11)在常温下原封不动放置一段时间,使封入剂凝固。做成镜下鉴定用的载片,再在 载片上粘贴记有试样编号、产地等内容的标签,即制作成可长久保存的载片。

B. 镜下观察、鉴定及照相

由于钙质超微化石在正交偏光显微镜下会呈现特殊的消光现象,因此,将所有制好的 薄片在正交偏光显微镜1000倍放大倍数油浸镜头下进行观察、鉴定及照相。随机选取 600个以上视域进行钙质超微化石属种的观察与鉴定,为确保化石分类鉴定的统一性和准 确性,选择部分样品进行扫描电子显微镜(SEM)观察。

(2)用扫描电子显微镜(SEM)观察试样的分析方法

扫描电子显微镜可以直接观察到钙质超微化石的构造细节,因此,也是一种常用的分 析方法。

试样的处理首先也是采用浓缩沉淀法,将钙质超微化石富集。方法步骤与上述用光学 显微镜观察的试样处理方法(1)~(6)步相同。之后不同的是将富集的上部清液、中部清液、 下部浊液分别滴在扫描电子显微镜专用的试样载台上进行充分干燥。再将载台上干燥好的 试样,在真空中喷金后即可进行观察和照相,具体方法参阅“Calcareous Nannofossils Biostratigraphy”一书中的“Techniques”一节(Bown et al.,1998)。本次电镜扫描的喷 金、观察及照相工作分3次在中国石油勘探开发研究院实验中心和中国地质大学(北京)扫描电镜室进行。

4.1.4.2 研究区钙质超微生物

本次研究分析了位于江孜—浪卡子地区5个剖面的55个样品,就其中保存的钙质超 微化石进行了处理并制片550件,选择部分样品进行扫描电子显微镜(SEM)观察,拍得 电镜扫描照片50张,并对部分较难识别的种类进行了光学显微镜和扫描电子显微镜的对 比观察。每张薄片观察视域600个以上,钙质超微化石的丰度按照Hay(1977)和Miriam Cobianchi et al.(1997)定义的标准估计:

A=abundant:6~10种/每个视域;C=common:1~5种/每个视域;

F=few:1种/1~10个视域;R=rare:1种/11~300个视域。

本次研究在江孜甲不拉沟口剖面和甲不拉剖面的甲不拉组,以及浪卡子县林西剖面桑 秀组首次发现了钙质超微化石(图版Ⅰ),尤其是甲不拉沟口剖面数量相对丰富(表 4.3)。许多类型属于全球性分子和洲际分子,为该套地层的时代划分、对比提供了依据。与全球其他地区同时期的钙质超微生物相比,研究区的生物丰度和分异度相对较低,以椭 圆盔球石科(Ellipsagelosphaeraceae)生物群为主。

表4.3 江孜甲不拉沟口和甲不拉剖面甲不拉组钙质超微化石分布表

注:J为甲不拉沟口剖面;JF为甲不拉剖面;A示化石含量丰富;C示化石含量中等;F示化石含量少;R示化 石含量稀少(A:6-10 specimens per view;C:1-5 specimens per view;F:1 specimen in 1-10 fields of view ;R:1 specimenin 11-300 fields of view)。

(1)Ellipsagelosp haeraceae生物群特征

Ellipsagelosphaeraceae生物群的特点是颗石呈圆形、椭圆形,双盾型,盾盘上的晶粒 互相叠覆。在正交偏光显微镜下,两个盾均具干涉图像。它又可分为Watznaueria,Cyclagelosphaera,Manivitella,Ellipsagelosphaera等属。本次研究发现Watznaueria属种占优 势,其次是Cyclagelosphaera,Manivitella的属种。

经鉴定Watznaueria属包括6个种,即Watznaueria barnesae,Watznaueria fossacincta,Watznaueria ovata,Watznaueria manivitae,Watznaueria cf. manivitae,Watznaueria biporta。Cyclagelosphaera属有2个种,即Cyclagelosphaera margerelii和Cyclagelosphaera deflandrei。Manivitella属有1个种,即Manivitella pemmatoidea。

Watznaueria属,Manivitella属与Cyclagelosphaera属的主要区别在于前两者颗石盾盘呈 椭圆形,而后者呈圆形、亚圆形。Watznaueria与Manivitella的主要区别在于后者具大而空 的中央区。Watznaueria属中以Watznaueria barnesae为优势种,每张薄片中单种丰度高达 40% 以上,其次按种的数量递减的是Watznaueria fossacincta,Watznaueria ovata,Watznaueria manivitae,Watznaueria cf. manivitae,Watznaueria biporta。这符合Watznaueria barnesae是保存不好的组合中最普遍的白垩纪颗石的说法(Perch-Nielsen,1985)。

从分类学角度讲,Watznaueria属的6个种根据个体的大小来区别,Watznaueria barnesae,Watznaueria fossacincta,Watznaueria ovata根据是否具有中央孔,以及中央孔的尺 寸大小加以区别,三者中央孔的尺寸依次增大。Watznaueria manivitae个体大,与 Watznaueria barnesae和Watznaueria fossacincta容易分开。Watznaueria cf. manivitae个体也很 大,一般超过8μm,中央孔小或关闭而与Watznaueria manivitae区别,Watznaueria biporta 在中央区具有两个大的穿孔为其显著特征。Watznaueria britannica的中央区具有横向棒,据此可与上述6个种加以区别。

Cyclagelosphaera属的外形呈圆形到亚圆形,是Ellipsagelosphaeraceae科中具有双折射 远端盾的一个属,在偏光显微镜下,该属远端盾发亮,与Markalius远端盾发暗相区别。研究区发现的两个种Cyclagelosphaera margerelii和Cyclagelosphaera deflandrei容易区别,前 者个体小,在偏光显微镜下远端盾很亮,而后者个体大,在偏光显微镜下颜色发黄。

Manivitella呈椭圆形,颗石的边缘区有两层环圈组成,其显著特征是中央区为大而中 空的开孔。

研究区的生物分异度相对较低,从生态环境上,常被看做典型的不稳定条件和富营养 的冷表层水(Okada et al.,1973;Brand,1994;Melinte et al.,2001 )。Watznaueria barnesae为优势种,在整个白垩纪大部分环境中常见且丰富,已被证实是一个非常抗溶的 广适性世界种,该种是精力充沛的生态型种,能尽快适应新的生境(Mutterlose,1991 ; Melinte et al.,2001)。另外,Watznaueria barnesae占优势,常被看做是叠加成岩的标志 (Roth,1986;Roth et al.,1986)。

(2)早白垩世钙质超微生物组合的层位分布和时代

A. 甲不拉组

江孜地区甲不拉沟口剖面甲不拉组底部灰色—深灰色页岩及粉砂质页岩中产丰富的钙 质超微化石Speetonia colligata,Calcicalathina oblongata,Watznaueria barnesae,Watznaueria fossacincta,Watznaueria manivitae,Watznaueria cf. manivitae,Watznaueria biporta,Watznaueria ovata,Cyclagelosphaera margerelii,Cyclagelosphaera deflandrei,Hexalithus noeliae,Hexalithus magharensis,Polycostella senaria,Biscutum constans,Manivitella pemmatoidea,Nannoconus steinmannii steinmannii,N. steinmannii minor;其中Watznaueria barnesae,Watznaueria fossacincta,Watznaueria ovata,Watznaueria manivitae,Watznaueria cf. manivitae,Cyclagelosphaera margerelii,Biscutum constans,Manivitella pemmatoidea,Diazomatolithus lehmanii等为世界种。Cyclagelosphaera deflandrei,Speetonia colligate,Calcicalathina oblongata,Hexalithus noeliae,Hexalithus magharensis,Polycostella senaria,N. steinmannii steinmannii,N. steinmannii minor等为特提斯种。

世界种相对丰富,Watznaueria属种占优势,每张薄片中Watznaueria属种的丰度高达 60%~90%以上,其次是其他属种,依次是Cyclagelosphaera margerelii,Biscutum constans,Manivitella pemmatoidea。Manivitella pemmatoidea出现的时代是Berriasian—Cenomanian期,Biscutum constans出现于白垩纪,Watznaueria与Cyclagelosphaera两属种时间跨度大,但常 被认为是晚侏罗世—早白垩世低纬度组合中的典型种。Bown et al.(1998)认为 Watznaueria britannica在晚侏罗世Tithonian期是优势种,在早白垩世时,Watznaueria属仍 占优势,但Watznaueria britannica常被Watznaueria barnesae和Watznaueria fossacincta取代。经仔细鉴定,本研究区没有发现Watznaueria britannica,而富含Watznaueria barnesae和 Watznaueria fossacincta等种,说明该区所处时代为早白垩世。

特提斯种数量相对较少,但它们多具有地层意义。Nannoconus steinmannii minor和 N.steinmannii steinmannii是早白垩世Berriasian期的标准带化石,但在本研究区的数量稀 少,丰度极低。Cyclagelosphaera deflandrei为特提斯海区特有的种,主要发现于早白垩世 早期的沉积物中(Perch-Nielsen,1985)。Polycostella senaria为早白垩世Berriasian的化石,Gartner(1977)认为Polycostella senaria为近海沉积物中鉴别Berriasian的极佳指示化石。Speetonia colligata为Berriasian—Hauterivian晚期的化石,Calcicalathina oblongata为 Valanginian早期至Hauterivian早期的化石。Hexalithus noeliae,Hexalithus magharensis出现 于白垩世。

甲不拉剖面的甲不拉组下部(2~4层)钙质超微化石的丰度和分异度远远低于甲不 拉沟口剖面,产Watznaueria barnesae,Watznaueria fossacincta,Watznaueria cf. manivitae,Watznaueria biporta,Cyclagelosphaera margerelii,Cyclagelosphaera deflandrei,Biscutum constans,Polycostella senaria,Manivitella pemmatoidea,Diazomatolithus lehmanii,Calcicalathina oblongata等。本剖面没有发现超微锥石类钙质超微化石(nannoconids),这 主要是因为甲不拉组下部多出露黑色页岩。从古生态角度讲,大多数黑色页岩中缺乏这种 超微锥石类钙质超微化石,但在远洋碳酸盐中该类化石却占优势,已被很多学者认为是贫 营养的生态型(Coccioni et al.,1992;Erba,1994)。

浪卡子县林西剖面甲不拉组下部页岩、粉砂岩中含少量的钙质超微化石Watznaueria barnesae,Tubodiscus verenae,Manivitella pemmatoidea。其中Manivitella pemmatoidea是早白 垩世Berriasian期至晚白垩世Cenomanian期的化石,Tubodiscus verenae为早白垩世 Valanginian期,因此,该区甲不拉组下部时代是早白垩世。

综合分析江孜和浪卡子地区甲不拉组下部化石,可看出化石的时代具有过渡性色彩,既有 侏罗纪延续下来的分子,也有白垩纪成员,但主要仍反映了早白垩世化石组合的面貌,时代为 早白垩世Berriasian期至Valanginian期,该化石组合相当于Sissingh(1977)化石分带CC1~ CC3带下部,以及Hardenbol et al.(1998)化石分带NJK-D至NK-3带(图4.3;表4.4)。

表4.4 西藏南部与其他地区钙质超微化石组合(带)对比表

B. 桑秀组

浪卡子县林西剖面桑秀组下部页岩中含少量的钙质超微化石Calcicalathina oblongata,Speetonia colligata,Diazomatolithus lehmanii,Polycostella senaria,Watznaueria barnesae 。化 石的丰度和分异度远远低于江孜地区甲不拉组,属种与甲不拉组部分化石相同,据上述分 析可知,此桑秀组底部与甲不拉组底部时代相同,为早白垩世Berriasian—Valanginian期,相当于Sissingh(1977)化石分带CC1~CC3带下部,以及Hardenbol et al.(1998)化石 分带NJK-D至NK-3带(图4.3;表4.4)。

本次在浪卡子县卡东剖面采得样品13块,共制成薄片130张,经仔细鉴定,桑秀组 及甲不拉组下部均没有发现钙质超微化石,这可能是因为卡东剖面桑秀组下部及甲不拉组 下部出露的多是黑色页岩,古海洋环境不利于钙质超微生物生存的缘故。

综上所述,经过仔细地分析研究,以及与同期世界其他区域的钙质超微化石组合 (带)对比,研究区甲不拉组下部和桑秀组下部钙质超微化石组合时代属于早白垩世 Berriasian—Valanginian期,相当于特提斯海区Sissingh(1977)化石分带CC1~CC3带下 部,以及Hardenbol et al.(1998)化石分带NJK-D至NK-3带(表4.4)。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/123415.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-14
下一篇2023-03-14

发表评论

登录后才能评论

评论列表(0条)

    保存