anova方差分析结果解读如下:
一、定义
方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用于两个及两个以上样本均数差别的显著性检验 。
二、原理
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。
(2) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。
三、基本思想
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
举例分析:
下面我们用一个简单的例子来说明方差分析的基本思想:
如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下:
患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均值的变异情况,则总变异有以下两个来源:
组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;
组间变异,即由于克山病的影响使得患者与健康人组的血磷值均值大小不等。
而且:SS总=SS组间+SS组内 v总=v组间+v组内
如果用均方(离差平方和除以自由度)代替离差平方和以消除各组样本数不同的影响,则方差分析就是用组间均方去除组内均方的商(即F值)与1相比较,若F值接近1,则说明各组均值间的差异没有统计学意义,若F值远大于1,则说明各组均值间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。
四、主要内容
分析方法
根据数据设计类型的不同,有以下两种方差分析的方法:
1、对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。
2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。
两类方差异同
两类方差分析的异同:
两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差 。
基本步骤
整个方差分析的基本步骤如下:
1、建立检验假设;
H0:多个样本总体均值相等;
H1:多个样本总体均值不相等或不全等。
检验水准为0.05。
2、计算检验统计量F值;
3、确定P值并作出推断结果 。
方法一:结果直接看最后一个表的Sig(双侧),可以看到是.000,说明差异显著,一般Sig值小于.05就可以认为是显著。方法二:方差齐性检验(F检验)显示两个独立总体方差不相等,这种情况是不能进行t检验的。从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。其中要判断两总体方差是否相等,就可以用F检验。还有,t检验的前提是资料服从正态分布。简单的说就是 检验两个样本的 方差是否有显著性差异 这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。配对T检验的结果表达的时候就说E1和E2在.01水平上差异显著即可。欢迎分享,转载请注明来源:夏雨云
评论列表(0条)