SEM结构方程模型

SEM结构方程模型,第1张

R包lavaan可以做

https://www.codetd.com/article/916129

软件AMOS可以做

https://mp.weixin.qq.com/s?__biz=MjM5MTI5MDgxOA==&mid=2650098738&idx=1&sn=319fcc4198fbcd36fc30fd1329e27bf0&chksm=beb6289f89c1a189115d96bb0f9bc3114a752f9bf1fed4c9979b2e965322d8e38c60844316de&scene=21#wechat_redirect

https://mp.weixin.qq.com/s?__biz=MjM5MTI5MDgxOA==&mid=2650098759&idx=1&sn=0099b81e77a2f8b6324e88a5b49773ed&chksm=beb628ea89c1a1fcdb4c068466e6f099e0bd1af0909bbc538aca4247477978b4b52b3b9aa036&scene=21#wechat_redirect

https://www.jianshu.com/p/d698dc099dec

https://www.jianshu.com/p/e0938fb35c45

https://blog.csdn.net/yjj20007665/article/details/66967966

χ2 卡方拟合指数 检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。原假设是模型协方差阵等于样本协方差阵。如果模型拟合的好,卡方值应该不显著。

RMR 是残差均方根。RMR 是样本方差和协方差减去对应估计的方差和协方差的平方和,再取平均值的平方根。RMR应该小于0.08,RMR越小,拟合越好。

RMSEA 是近似误差均方根 RMSEA应该小于0.06,越小越好。

GFI 是拟合优度指数,范围在0和1间,但理论上能产生没有意义的负数。按照约定,要接受模型,GFI 应该等于或大于0.90。

CFI 是比较拟合指数,其值位于0和1之间。CFI 接近1表示拟合非常好,其值大于0.90表示模型可接受,越接近1越好。

同时要求样本和指标之间有一个最低数量比例

最好是大于0.9,甚至于大于0.95,这些拟合指标的临界值都是通过大量的数据模拟得到的,也就是说如果达不到这些指标,模型很可能就是误设模型,不过我也有看到一篇数据模拟的论文里提到当样本量小于500的时候,srmr是最合适的指标,如果小于0.05,可以肯定模型正确,若大于0.08,可以肯定是误设的(适用于数据正态时,偏态时大于0.11认为模型误设),而其他的拟合指标表现不稳定,那这个时候主要参考srmr就可以,其他的指标过得去就行,如果样本量大于1000,NNFI,CFI,IFI这些指标比较合适,0.95以上可以认为模型正确,0.85以下可以断定模型错误(适用于数据偏态时,正态时0.95以下即认为误设)

你自己根据自己的的数据情况看吧,对于你提到的指标,我相信90%的文献都说是0.9以上为标准的,这个经验值还是很可信的,如果你不是正在写论文,那完全可以接受这个结果,如果你一定想要结果好,那就要么好好处理处理数据,重新做一下结构方程的分析,要么就找到相关的文献支持,以表明你用0.9以下的指标数值是合理的

如果是论文答辩或者发论文,只是0.8过一些那很可能要被答辩老师或者审稿人质疑的,接近0.9应该还勉强可以

对潜在变量(std.lv)或观察变量和潜在变量(std.all)进行标准化。sem结构方程模型数据对潜在变量(std.lv)或观察变量和潜在变量(std.all)进行标准化。SEM表示搜索引擎营销,SEM可以全面而有效地利用搜索引擎来进行网络营销和推广。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/126303.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-15
下一篇2023-03-15

发表评论

登录后才能评论

评论列表(0条)

    保存