EBSD即电子背散射衍射。EBSD的原理始于20世纪50年代,技术问世于80年代。EBSD是扫描电子显微镜(SEM)的一个标准分析附件,但大大拓宽了扫描电子显微镜进行微观分析的功能。它可以与SEM的其他功能(包括EDS等配件)结合起来,原位成像、成分分析、大样品分析、粗糙表面成像等,克服了传统分析方法中的一些缺陷。
EBSD系统主要由背散射探测器、高灵敏度CCD数字照相机、图像采集卡、计算机分析软件及数据库等组成(图7-2)。探测器用于获取样品中激发出的背散射电子信号;高灵敏度CCD数字照相机获得electron backscat-ter pattern图像后,经过图像采集卡输送到计算机系统。计算机自动对于采集的图像进行识别和标定,同时与标准数据库进行比对,进而获得晶体颗粒的结晶学信息。
EBSD系统把显微构造与晶格结构(或结晶学)直接联系起来;测定优势定向颗粒群中单个晶体颗粒的定向;标定晶体颗粒的基本几何属性参数;获取超微尺度上晶体界面属性在内的晶体空间要素的大量信息等。目前EBSD已经成为一种非常成熟的技术,并在材料科学、地质学、冶金学、考古学等领域得到了广泛的应用。尤其是在材料科学中,已经成为物质材料显微组构、构造标定和研究的一种常规手段。
EBSD技术的发展和应用,也为岩石超微构造分析与研究拓展了新的空间。自90年代中期EBSD技术引入变形岩石显微构造与结构分析研究中以来,不少学者对于具有特殊性(即非导电性和晶体结构非对称性)的岩石样品开展了初步研究工作。在岩石显微构造研究中,通过EBSD可以快速获取海量数据,使得研究极细粒物质(微米-纳米级)的定向组构成为可能,确定二轴晶矿物的结晶学组构(如角闪石)更简便;也为获得快速准确地确定金属矿物和不透明矿物及等轴晶系均质体矿物(如石榴子石)的结晶学组构提供了技术支撑;更可以开展岩石显微构造、矿物塑性变形机制;矿物相鉴定、矿物相变、晶粒尺寸测量、超微域内的应变估算、矿物晶格优选方位(LPO)与地震波各向异性的关系研究等;并通过岩石微观和超微观构造,反演和示踪地球动力学过程的信息等等。
总之,EBSD技术的广泛应用,必将带来岩石显微构造分析与研究的新突破,也将成为未来一个时期岩石变形机制与岩石圈流变学研究取得飞速发展的催化剂。
EBSD制样:EBSD分析对于样品表面的抛光度要求较高,有不同的制作方法,包括机械抛光、电解抛光、离子束抛光和聚焦离子束(FIB,focused ion beam)切割。下面简单介绍最常使用的机械抛光方法。
机械抛光过程的主要目的,在于将样品制备初期阶段磨制过程中在样品表面形成的几个纳米厚的变形层去除,以使得背散射电子信号有效地反映晶体内部结构特征。样品制备包括两个阶段,即磨制阶段和抛光阶段:
(1)磨片:将拟观察分析的样品制作成普通光片或光薄片,最好用较细的金刚砂磨制薄片;(2)抛光:依次使用9μm、6μm、3μm金刚石溶液、1μm alpha氧化铝或0.3μmalpha氧化铝和0.05μm或0.02μm硅胶/氧化铝抛光液或抛光膏进行抛光。
对于不导电的非金属样品,还需要在样品表面喷碳或镀金,以便于观察和获取更好的信号。值得注意的是,由于背散射电子获取的信号是样品表面10nm以内的晶体结构信息,样品喷镀的厚度需要严格掌握。
氩离子精密抛光刻蚀镀膜仪是一款集抛光与镀膜于一身的桌面型制样设备。对于同一个样品,可在同一真空环境下完成抛光及镀膜。通过利用两个宽束氩离子源对样品表面进行抛光,去除损伤层,从而得到高质量的样品,用于SEM、光镜、扫描探针显微镜、EDS、EBSD、CL、EBIC或其他分析。
如图所示,氩离子精密抛光刻蚀镀膜仪配备的三种样品台,其中a、b为平面样品台,可用于样品的镀膜及平面抛光;c为截面样品台,用于截面样品的抛光。
氩离子精密抛光刻蚀镀膜仪同时配备金和铂两个靶材,可根据实际镀膜需求选择合适的靶材进行镀膜或改善扫描电镜样品导电性。
氩离子精密抛光刻蚀镀膜仪同时配备了平面和截面样品抛光用的样品台,以满足不同样品的抛光需求。通过选择合适的离子束能量、离子枪角度、离子枪工作模式、样品台转速及时间控制氩离子的作用强度、深度及角度,实现样品表层损伤层的去除。其中,平面样品可根据待抛光样的高度选择a或b平面样品台;截面样品抛光则选择截面样品台c,同时配合配合挡板的使用,可有效遮蔽下半部分离子束,实现对非目标区域保护并对目标区域损伤层去除的目的。
功能: 具备平面大面积离子抛光、横截面离子抛光及高精度离子束镀膜,全面解决高端场发射电镜所有制样需求
离子枪: 两只潘宁式离子枪,装载微小磁铁,聚焦离子束设计,无消耗;
离子枪角度 :0°到 + 18°,每只离子枪可独立调节;
离子枪束能量: 0.1keV~8keV, 可在不同电压下自动优化离子束束流;
抛光区域面积 :平面抛光区域直径≥10mm,横截面≥2mm×2mm;
最大样品尺寸 :直径32mm×高15mm
样品更换 :专利Whisperlok设计,样品更换时间<1min,无需破样品室真空;
冷台部分 :带有液氮冷台,以及精确控温系统,一次加注液氮续航能力6-8小时;
控制部分 :10英寸触摸屏控制,菜单化操作,并支持研磨抛光程序的设定和储存;
耙材装置 :同时安装两种靶材,在不破真空的情况下,可自由选择不同靶材进行镀膜,可配备常见所有种类金属靶材、碳靶材甚至氧化物靶材;
离子抛光 结束后可直接在真空中进行镀膜处理,无需破真空再进行镀膜,可防止样品氧化,一站式解决高端电镜制样需求;
无油真空系统 :无油机械泵+分子泵系统。
薄膜样品由于其厚度薄,常规抛光手段很难实现对其截面的抛光制样,如图2 所示厚度仅90μm PET表层镀金样品,其截面抛光前粗糙,无法分辨基底及镀膜层,利用氩离子抛光后,其表面光滑平整,对红框处放大后可清晰观察到表层金膜。
图3所示为涂层样品抛光前后对比图,从图中可以看到,抛光前,涂层边界处破损严重,涂层与基底处表层覆盖较厚损伤层,对其进行氩离子抛光后,完整的涂层区清晰可见,且对红框处放大可观察到涂层及基底区明显的晶粒分布。
1.与FIB相比,氩离子制样面积更大,制样速率更高;
2.氩离子质量较镓离子更轻,产生的应力层,非晶层更薄,可避免由于制样方法对实验数据产生的误导;
3.氩离子抛光产生的晶格畸变小,可提高EBSD标定率,降低标定参数,提高标定效率;
4.对于易发热的样品,可以通过液氮实时控制样品室温度,避免发热对实验数据的影响,同时提高EBSD标定率。
不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)