《R语言实战》自学笔记71-主成分和因子分析

《R语言实战》自学笔记71-主成分和因子分析,第1张

主成分分析

成分分析((Principal Component Analysis,PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分(原来变量的线性组合)。整体思想就是化繁为简,抓住问题关键,也就是降维思想。

主成分分析法是通过恰当的数学变换,使新变量——主成分成为原变量的线性组合,并选取少数几个在变差总信息量中比例较大的主成分来分析事物的一种方法。主成分在变差信息量中的比例越大,它在综合评价中的作用就越大。

因子分析

探索性因子分析法(Exploratory Factor Analysis,EFA)是一系列用来发现一组变量的潜在结构的方法。它通过寻找一组更小的、潜在的或隐藏的结构来解释已观测到的、显式的变量间的关系。

PCA与EFA模型间的区别

参见图14-1。主成分(PC1和PC2)是观测变量(X1到X5)的线性组合。形成线性组合的权重都是通过最大化各主成分所解释的方差来获得,同时还要保证个主成分间不相关。相反,因子(F1和F2)被当做是观测变量的结构基础或“原因”,而不是它们的线性组合。

R的基础安装包提供了PCA和EFA的函数,分别为princomp()和factanal()。

最常见的分析步骤

(1)数据预处理。PCA和EFA都根据观测变量间的相关性来推导结果。用户可以输入原始数据矩阵或者相关系数矩阵到principal()和fa()函数中。若输入初始数据,相关系数矩阵将会被自动计算,在计算前请确保数据中没有缺失值。

(2)选择因子模型。判断是PCA(数据降维)还是EFA(发现潜在结构)更符合你的研究目标。如果选择EFA方法,你还需要选择一种估计因子模型的方法(如最大似然估计)。

(3)判断要选择的主成分/因子数目。

(4)选择主成分/因子。

(5)旋转主成分/因子。

(6)解释结果。

(7)计算主成分或因子得分。

PCA的目标是用一组较少的不相关变量代替大量相关变量,同时尽可能保留初始变量的信息,这些推导所得的变量称为主成分,它们是观测变量的线性组合。如第一主成分为:

它是k个观测变量的加权组合,对初始变量集的方差解释性最大。第二主成分也是初始变量的线性组合,对方差的解释性排第二,同时与第一主成分正交(不相关)。后面每一个主成分都最大化它对方差的解释程度,同时与之前所有的主成分都正交。理论上来说,你可以选取与变量数相同的主成分,但从实用的角度来看,我们都希望能用较少的主成分来近似全变量集。

主成分与原始变量之间的关系

(1)主成分保留了原始变量绝大多数信息。

(2)主成分的个数大大少于原始变量的数目。

(3)各个主成分之间互不相关。

(4)每个主成分都是原始变量的线性组合。

数据集USJudgeRatings包含了律师对美国高等法院法官的评分。数据框包含43个观测,12个变量。

用来判断PCA中需要多少个主成分的准则:

根据先验经验和理论知识判断主成分数;

根据要解释变量方差的积累值的阈值来判断需要的主成分数;

通过检查变量间k × k的相关系数矩阵来判断保留的主成分数。

最常见的是基于特征值的方法。每个主成分都与相关系数矩阵的特征值相关联,第一主成分与最大的特征值相关联,第二主成分与第二大的特征值相关联,依此类推。

Kaiser-Harris准则建议保留特征值大于1的主成分,特征值小于1的成分所解释的方差比包含在单个变量中的方差更少。Cattell碎石检验则绘制了特征值与主成分数的图形。这类图形可以清晰地展示图形弯曲状况,在图形变化最大处之上的主成分都可保留。最后,你还可以进行模拟,依据与初始矩阵相同大小的随机数据矩阵来判断要提取的特征值。若基于真实数据的某个特征值大于一组随机数据矩阵相应的平均特征值,那么该主成分可以保留。该方法称作平行分析。

图形解读:线段和x符号组成的图(蓝色线):特征值曲线;

红色虚线:根据100个随机数据矩阵推导出来的平均特征值曲线;

绿色实线:特征值准则线(即:y=1的水平线)

判别标准:特征值大于平均特征值,且大于y=1的特征值准则线,被认为是可保留的主成分。根据判别标准,保留1个主成分即可。

fa.parallel函数学习

fa.parallel(data,n.obs=,fa=”pc”/”both”,n.iter=100,show.legend=T/F)

data:原始数据数据框;

n.obs:当data是相关系数矩阵时,给出原始数据(非原始变量)个数,data是原始数据矩阵时忽略此参数;

fa:“pc”为仅计算主成分,“fa”为因子分析,“both”为计算主成分及因子;

n.iter:模拟平行分析次数;

show.legend:显示图例。

principal(r, nfactors = , rotate = , scores = )

r:相关系数矩阵或原始数据矩阵;

nfactors:设定主成分数(默认为1);

rotate:指定旋转的方法,默认最大方差旋转(varimax)。

scores:设定是否需要计算主成分得分(默认不需要)。

PC1栏包含了成分载荷,指观测变量与主成分的相关系数。如果提取不止一个主成分,那么还将会有PC2、PC3等栏。成分载荷(component loadings)可用来解释主成分的含义,解释主成分与各变量的相关程度。

h2栏为成分公因子方差,即主成分对每个变量的方差解释度。

u2栏为成分唯一性,即方差无法被主成分解释的部分(1-h2)。

SS loadings包含了与主成分相关联的特征值,其含义是与特定主成分相关联的标准化后的方差值,即可以通过它来看90%的方差可以被多少个成分解释,从而选出主成分(即可使用nfactors=原始变量个数来把所有特征值查出,当然也可以直接通过eigen函数对它的相关矩阵进行查特征值)。

Proportion Var表示每个主成分对整个数据集的解释程度。

Cumulative Var表示各主成分解释程度之和。

Proportion Explained及Cumulative Proportion分别为按现有总解释方差百分比划分主成分及其累积百分比。

结果解读:第一主成分(PC1)与每个变量都高度相关,也就是说,它是一个可用来进行一般性评价的维度。ORAL变量99.1%的方差都可以被PC1来解释,仅仅有0.91%的方差不能被PC1解释。第一主成分解释了11个变量92%的方差。

结果解读:通过碎石图可以判定选择的主成分个数为2个。

结果解读:从结果Proportion Var: 0.58和0.22可以判定,第一主成分解释了身体测量指标58%的方差,而第二主成分解释了22%,两者总共解释了81%的方差。对于高度变量,两者则共解释了其88%的方差。

旋转是一系列将成分载荷阵变得更容易解释的数学方法,它们尽可能地对成分去噪。旋转方法有两种:使选择的成分保持不相关(正交旋转),和让它们变得相关(斜交旋转)。旋转方法也会依据去噪定义的不同而不同。最流行的正交旋转是方差极大旋转,它试图对载荷阵的列进行去噪,使得每个成分只是由一组有限的变量来解释(即载荷阵每列只有少数几个很大的载荷,其他都是很小的载荷)。 结果列表中列的名字都从PC变成了RC,以表示成分被旋转。

当scores = TRUE时,主成分得分存储在principal()函数返回对象的scores元素中。

如果你的目标是寻求可解释观测变量的潜在隐含变量,可使用因子分析。

EFA的目标是通过发掘隐藏在数据下的一组较少的、更为基本的无法观测的变量,来解释一

组可观测变量的相关性。这些虚拟的、无法观测的变量称作因子。(每个因子被认为可解释多个

观测变量间共有的方差,因此准确来说,它们应该称作公共因子。)

其中 是第i个可观测变量(i = 1…k), 是公共因子(j = 1…p),并且p<k。 是 变量独有的部分(无法被公共因子解释)。 可认为是每个因子对复合而成的可观测变量的贡献值。

碎石检验的前两个特征值(三角形)都在拐角处之上,并且大于基于100次模拟数据矩阵的特征值均值。对于EFA,Kaiser-Harris准则的特征值数大于0,而不是1。

结果解读:PCA结果建议提取一个或者两个成分,EFA建议提取两个因子。

fa(r, nfactors=, n.obs=, rotate=, scores=, fm=)

 r是相关系数矩阵或者原始数据矩阵;

 nfactors设定提取的因子数(默认为1);

 n.obs是观测数(输入相关系数矩阵时需要填写);

 rotate设定旋转的方法(默认互变异数最小法);

 scores设定是否计算因子得分(默认不计算);

 fm设定因子化方法(默认极小残差法)。

与PCA不同,提取公共因子的方法很多,包括最大似然法(ml)、主轴迭代法(pa)、加权最小二乘法(wls)、广义加权最小二乘法(gls)和最小残差法(minres)。统计学家青睐使用最大似然法,因为它有良好的统计性质。

结果解读:两个因子的Proportion Var分别为0.46和0.14,两个因子解释了六个心理学测试60%的方差。

结果解读:阅读和词汇在第一因子上载荷较大,画图、积木图案和迷宫在第二因子上载荷较大,非语言的普通智力测量在两个因子上载荷较为平均,这表明存在一个语言智力因子和一个非语言智力因子。

正交旋转和斜交旋转的不同之处。

对于正交旋转,因子分析的重点在于因子结构矩阵(变量与因子的相关系数),而对于斜交旋转,因子分析会考虑三个矩阵:因子结构矩阵、因子模式矩阵和因子关联矩阵。

因子模式矩阵即标准化的回归系数矩阵。它列出了因子预测变量的权重。因子关联矩阵即因子相关系数矩阵。

图形解读:词汇和阅读在第一个因子(PA1)上载荷较大,而积木图案、画图和迷宫在第二个因子(PA2)上载荷较大。普通智力测验在两个因子上较为平均。

与可精确计算的主成分得分不同,因子得分只是估计得到的。它的估计方法有多种,fa()函数使用的是回归方法。

R包含了其他许多对因子分析非常有用的软件包。FactoMineR包不仅提供了PCA和EFA方法,还包含潜变量模型。它有许多此处我们并没考虑的参数选项,比如数值型变量和类别型变量的使用方法。FAiR包使用遗传算法来估计因子分析模型,它增强了模型参数估计能力,能够处理不等式的约束条件,GPArotation包则提供了许多因子旋转方法。最后,还有nFactors包,它提供了用来判断因子数目的许多复杂方法。

主成分分析

1.数据导入

数据结构:对10株玉米进行了生物学性状考察,考察指标有株高,穗位,茎粗,穗长,秃顶,穗粗,穗行数,行粒数。

结果解读:选择2个主成分即可保留样本大量信息。

3.提取主成分

结果解读:主成分1可解释44%的方差,主成分2解释了26%的方差,合计解释了70%的方差。

4.获取主成分得分

5.主成分方程

PC1 = 0.27 株高 - 0.04 穗位 + 0.29 茎粗 - 0.01 穗长 - 0.21 秃顶 - 0.13 穗粗 + 0.16 穗行数 + 0.24 行粒数

PC2 = -0.01 株高 + 0.36 穗位 - 0.10 茎粗 + 0.41 穗长 - 0.08 秃顶 + 0.43 穗粗 - 0.15 穗行数 + 0.01 行粒数

图形解读:此图反映了变量与主成分的关系,三个蓝点对应的RC2值较高,点上的标号2,4,6对应变量名穗位,穗长,穗粗,说明第2主成分主要解释了这些变量,与这些变量相关性强;黑点分别对应株高,茎粗,穗行数,行粒数,说明第一主成分与这些变量相关性强,第一主成分主要解释的也是这些变量,而5号点秃顶对于两个主成分均没有显示好的相关性。

因子分析

图解:可以看到需要提取4个因子。

2.提取因子

结果解读:因子1到4解释了80%的方差。

3.获取因子得分

图解:可以看出,因子1和因子2的相关系数为0.4,行粒数,株高,茎粗,秃顶在因子1的载荷较大,穗长,穗位在因子2上的载荷较大;因子3只有穗行数相关,因子4只有穗粗相关。

参考资料:

数据挖掘总结之主成分分析与因子分析

主成分分析与因子分析

1)概念:

主成分分析概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。

PCA的目标是用一组较少的不相关变量代替大量相关变量,同时尽可能保留初始变量的信息,这些推导所得的变量称为主成分,它们是观测变量的线性组合。

因子分析概念:探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法。通过寻找一组更小的、潜在的或隐藏的结构来解释已观测到的、显式的变量间的关系。进行EFA需要大量的样本,一般经验认为如何估计因子的数目为N,则需要有5N到10N的样本数目。

PCA/EFA 分析流程:

(1)数据预处理;PCA和EFA都是根据观测变量间的相关性来推导结果。用户可以输入原始数据矩阵或相关系数矩阵列到principal()和fa()函数中,若输出初始结果,相关系数矩阵将会被自动计算,在计算前请确保数据中没有缺失值;

(2)选择因子分析模型。判断是PCA(数据降维)还是EFA(发现潜在结构)更符合你的分析目标。选择EFA方法时,还需要选择一种估计因子模型的方法(如最大似然估计)。

(3)判断要选择的主成分/因子数目;

(4)选择主成分/因子;

(5)旋转主成分/因子;

(6)解释结果;

(7)计算主成分或因子得分。

2)、因子分析与主成分分析的区别

①原理不同

主成分分析基本原理:利用降维(线性变换)的思想,每个主成分都是原始变量的线性组合,且各个主成分之间互不相关。

因子分析基本原理:利用降维的思想,从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)

②侧重点不同

主成分分析侧重“变异量”,主成分分析是原始变量的线性组合,得出来的主成分往往从业务场景的角度难以解释

因子分析更重视相关变量的“共变异量”,因子分析需要构造因子模型:EFA中的原始变量是公共因子的线性组合,因子是影响变量的潜在变量,目的是找到在背后起作用的少量关键因子,因子分析的结果往往更容易用业务知识去加以解释

③ 因子分析的评价结果没有主成分分析准确因子分析比主成分分析的计算工作量大

主成分分析:原始变量的线性组合表示新的综合变量,即主成分;

EFA和PCA的区别在于:PCA中的主成分是原始变量的线性组合,而EFA中的原始变量是公共因子的线性组合,因子是影响变量的潜在变量,变量中不能被因子所解释的部分称为误差,因子和误差均不能直接观察到。进行EFA需要大量的样本,一般经验认为如何估计因子的数目为N,则需要有5N到10N的样本数目。

主成分分析和探索性因子分析是两种用来探索和简化多变量复杂关系的常用方法。

主成分分析(PCA)是一种将数据降维技巧,它将大量相关变量转化成一组很少的不相关变量,这些无相关变量称为主成分。

探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法。

R基础安装包提供了PCA和EFA的函数,分别是princomp()和factanal()。本章重点介绍psych包中提供的函数,该包提供了比基础函数更丰富和有用的选项。

最常见步骤

1、数据预处理,在计算前请确保数据没有缺失值;

2、选择因子模型,是选择PCA还是EFA,如果选择EFA,需要选择一种估计因子模型,如最大似然法估计;

3、判断要选择的主成分/因子数目;

4、选择主成分/因子;

5、旋转主成分/因子;

6、解释结果;

7、计算主成分或因子得分。

加载psych包

library(ggplot2)

library(psych)

展示基于观测特征值的碎石检验、根据100个随机数据矩阵推导出来的特征值均值、以及大于1的特征值准则(Y=1的水平线)

fa.parallel(USJudgeRatings[, -1], fa = "pc", n.iter = 100, show.legend = FALSE, main = 'Scree plot with parallel analysis')

对数据USJudgeRatings进行主成分分析

pc<-principal(USJudgeRatings[, -1],nfactors=1)

pc


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/129870.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-16
下一篇2023-03-16

发表评论

登录后才能评论

评论列表(0条)

    保存