氨基的保护及脱保护策略

氨基的保护及脱保护策略,第1张

选择一个氨基保护基时,必须仔细考虑到所有的反应物,反应条件及所设计的反应过程中会涉及的所有官能团。

首先,要对所有的反应官能团作出评估,确定哪些在所设定的反应条件下是不稳定并需要加以保护的,并在充分考虑保护基的性质的基础上,选择能和反应条件相匹配的氨基保护基。

其次,当几个保护基需要同时被除去时,用相同的保护基来保护不同的官能团是非常有效(如苄基可保护羟基为醚,保护羧酸为酯,保护氨基为氨基甲酸酯)。要选择性去除保护基时,就只能采用不同种类的保护基(如一个Cbz保护的氨基可氢解除去,但对另一个Boc保护的氨基则是稳定的)。此外,还要从电子和立体的因素去考虑对保护的生成和去除速率的影响(如羧酸叔醇酯远比伯醇酯难以生成或除去)。

最后,如果难以找到合适的保护基,要么适当调整反应路线使官能团不再需要保护或使原来在反应中会起反应的保护基成为稳定的;要么重新设计路线,看是否有可能应用前体官能团(如硝基,亚胺等);或者设计出新的不需要保护基的合成路线。

在合成反应中,伯胺、仲氨、咪唑、吡咯吲哚和其他芳香氮杂环中的氨基往往是需要进行保护的。已经使用过的氨基保护基很多,但归纳起来,可以分为烷氧羰基、酰基和烷基三大类。烷氧羰基使用最多,因为N-烷氧羰基保护的氨基酸在接肽时不易发生消旋化。伯胺、仲氨、咪唑、吡咯、吲哚和其他芳香氮氢都可以选择合适的保护基进行保护。以下列举了几种代表性的常用的氨基保护基。

1. Cbz- 保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:Cbz-Cl/Na2CO3/CHCl3/H2O

脱去条件:H2/Pd-C,供氢体/Pd-C,BBr3/CH2Cl2 or TFA,HBr/HOAc等

2. Boc- 保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:Boc2O/NaOH/diox/H2O, Boc2O/ /MeOH, Boc2O/Me4NOH/CH3CN

脱去条件:3MHCl/EtOAc, HCl/MeOH or diox, TosOH/THF-CH2Cl2, Me3SiI/CHCl3orCH3CN

3. Fmoc-保护基

应用范围:伯胺、仲胺等

引入条件:Fmoc-Cl/NaHCO3,/diox/H2O

脱去条件:20%哌啶/DMF,50%哌啶/CH2Cl2等

4. Alloc-保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:Aloc-Cl/Py

脱去条件:Ni(CO)4/DMF/H2OPd(PPh3)4/Bu3SnH

5. Teoc- 保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:Teoc-Cl/碱/diox/H2O

脱去条件:TBAF;TEAF

6. 甲(乙)氧羰基- 保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:ROCOCl/NaHCO3,/diox/H2O

脱去条件:HBr/HOAcMe3SiIKOH/H2O/乙二醇

7. Pht- 保护基

应用范围:伯胺

引入条件:邻苯二甲酸酐/CHCl3/70℃邻苯二甲酰亚胺-NCO2Et/aq. Na2CO3

脱去条件:H2NNH2/EtOH,NaBH4/i-PrOH-H2O(6:1)

8. Tos- 保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:Tos-Cl/Et3N

脱去条件:HBr/HOAc, 48%HBr/苯酚(cat)

9. Tfa- 保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:TFAA/Py苯二甲酰亚胺-NCO2CF3/CH2Cl2

脱去条件:K2CO3/MeOH/H2ONH3/MeOHHCl/MeOH

10. Trt- 保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:Trt-Cl/Et3N

脱去条件:HCl/MeOH, H2/Pd/EtOH, TFA/CH2Cl2

11.Dmb - 保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:ArCHO/NaCNBH3/MeOH

12. PMB- 保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:PMB-Br/ K2CO3/CH3CNPhCHO/NaCNBH3/MeOH

脱去条件:HCO2H/Pd-C/MeOHH2/Pd(OH)2/EtOHTFACAN/ CH3CN

13. Bn- 保护基

应用范围:伯胺、仲胺、咪唑、吡咯、吲哚等

引入条件:Bn-Br/Et3N or K2CO3/CH3CNPhCHO/NaCNBH3/MeOH

脱去条件:HCO2H/Pd-C/MeOHH2/Pd(OH)2/EtOH  CCl3CH2OCOCl/CH3CN

吲哚分子结构数据:1、 摩尔折射率:38.52。2、 摩尔体积(cm3/mol):101.8。3、 等张比容(90.2K):270.7。4、 表面张力(dyne/cm):49.8。5、 极化率15.27。

吲哚是吡咯与苯并联的化合物,又称苯并吡咯,化学式为C8H7N。吡咯和苯有两种并合方式,分别称为吲哚和异吲哚。吲哚及其同系物和衍生物广泛存在于自然界,主要存在于天然花油,如茉莉花、苦橙花、水仙花、香罗兰等中。

安全术语:

S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

眼睛接触后,立即用大量水冲洗并征求医生意见。

S36/37/39:Wear suitable protective clothing, gloves and eye/face protection.

穿戴适当的防护服、手套和眼睛/面保护。

参考资料来源:百度百科 - 吲哚

第一作者:Chin-Te Hung、Linlin Duan

通讯作者:赵东元院士、李伟教授

通讯单位:复旦大学

DOI: 10.1021/jacs.2c01444

全文速览

合成具有均匀空间梯度和结构强化效应的多级多孔结构仍然是一个巨大的挑战。在本文中,作者开发出一种胶束动态组装策略,成功合成出一种具有梯度多孔结构的沸石@介孔二氧化硅核壳纳米球(ZeoA@MesoS)。研究发现,复合胶束的尺寸可以随着溶胀剂的增加而动态变化,该溶胀剂可原位作为构建模块用于梯度介孔结构的模块化组装。所制备出的ZeoA@MesoS纳米球在溶剂中高度分散,内核具有均匀的微孔,并且介孔壳呈现梯度管状。将其用作纳米反应器时,该多级梯度多孔结构能够实现从溶液到内部活性位点的毛细管导向快速传质。因此,ZeoA@MesoS催化剂在长链棕榈酸的酯化反应中表现出高达75%的产率,并且即便在水干扰下也具有优异的稳定性,因为水干扰可以被ZeoA核捕获,从而推动化学平衡。此外,锚定Pd的ZeoA@MesoS催化剂在大分子N-甲基吲哚的C–H芳基化反应中也表现出优异的催化转化性能(98%)。与不含沸石核的Pd-枝晶状介孔二氧化硅相比,耐水特性可以使催化产率显著提高26%。

背景介绍

近年来,一些基于分子组装概念的策略已被证明可以将多级孔隙生长引导为各种形状和多孔结构,其主要方法是采用宏观/介观尺度组装单元作为孔隙导向剂,从而形成大孔和介孔的多级组装。然而,利用该方法合成出的大多数产品均为微米级的块状材料,没有均匀的形状和自然的梯度结构。另一种获得多级多孔结构的策略是构筑多孔核壳结构,通过控制核与壳中孔隙的大小来实现。迄今为止,科研人员在合成具有均匀形貌和孔径的多孔核壳结构材料方面付出了巨大努力。然而,这种均匀的多孔结构在催化反应等实际应用中的性能远不能令人满意,因其不利于催化过程中的动态变化和复杂的耦合机制。因此,在精细的控制水平上模拟自然的多级多孔结构仍然具有挑战性。

在本文中,作者开发出一种胶束动态组装策略,成功合成出一种具有空间梯度多孔结构的沸石@介孔二氧化硅核-壳结构(ZeoA@MesoS)。所制备出的ZeoA@MesoS材料表现出高度单分散性,具有球形形貌和中心-径向梯度介孔通道(2-10 nm),在核中具有均匀的微孔(0.5 nm)。通过动态改变作为自组装基本单元的复合胶束模板,可以精确的控制介孔尺寸。更重要的是,这种梯度多级多孔结构可以很好地模拟自然界中的多级多孔系统,自发地表现出从溶液到内部活性位点的毛细管导向快速传质用于化学反应。作为概念性验证,长链羧酸与醇的酯化反应被选为评估ZeoA@MesoS纳米反应器优异性能的模型反应。与纯MesoS相比,ZeoA@MesoS在含水量为6%的溶液中仍表现出显著提高的产率(增加29%),且初始反应速率提高了3倍。研究表明,ZeoA核和梯度多孔壳结构可以提供有效的捕水能力和从壳层到内核的快速传输。此外,通过在ZeoA@MesoS的介孔壳层上负载Pd,可以将其应用扩展至各种催化反应中。在大分子N-甲基吲哚的直接C–H芳基化反应中,负载Pd的ZeoA@MesoS催化剂表现出高达98%的N-甲基-2-苯基吲哚产率,证明该梯度多级多孔结构的优势。

图文解析

图1 . 通过胶束动态组装策略合成出LTA沸石@介孔二氧化硅核壳结构纳米球(ZeoA@MesoS)的示意图。

图2 . 水热法制备出ZeoA纳米晶的(a,b)TEM图,(c)HRTEM图;通过胶束动态组装策略制备出核壳结构ZeoA@MesoS的(d)SEM图,(e,f) TEM图,(g,h) HRTEM图,其中箭头表示ZeoA纳米晶核的微孔与二氧化硅壳层的介孔之间的连接。

图3 . ZeoA纳米晶和ZeoA@MesoS的(a)X射线粉末衍射(XRD)图谱;(b)氮吸附-脱附等温线和孔径分布曲线;(c)氨程序升温脱附(NH3-TPD)曲线。

图4 . (a)磺酸功能化ZeoA@MesoS (SA-ZeoA@MesoS)催化长链羧酸(棕榈树, PA)酯化反应的示意图;(b)新制备出SA-ZeoA@MesoS催化剂的TEM图;(c)SA-ZeoA@MesoS与磺酸功能化MesoS (SA-MesoS)作为催化剂时,PA酯化反应与反应周期的关系;(d)初始反应速率对循环次数的依赖性;(e)SA-ZeoA@MesoS和SA-MesoS催化剂在PA酯化反应中的耐水性。

图5. (a)Pd-n-ZeoA@MesoS催化剂用于N-甲基吲哚C–H芳基化反应的示意图;(b)Pd-n-ZeoA@MesoS催化剂的TEM图;(c)Pd-n-ZeoA@MesoS催化剂上负载Pd的粒径分布;(d)Pd-n-ZeoA@MesoS和Pd-ZeoA@MesoS作为催化剂时,N-甲基吲哚C–H芳基化反应的产率与反应周期的关系;(e)以ZeoA, MesoS, n-ZeoA@MesoS, Pd-n-ZeoA@MesoS, Pd-ZeoA@MesoS, Pd-n-MesoS, Pd-n-MesoS/ZeoA, 商业化Pd/C, PdCl2作为催化剂时的产率比较;(f)以回收的Pd-n-ZeoA@MesoS作为催化剂时,循环运行中的产率(蓝线)和初始反应速率(红线)。

总结与展望

综上所述,本文通过胶束动态组装策略成功合成出一种具有独特梯度多级多孔结构的沸石@介孔二氧化硅核壳纳米球(ZeoA@MesoS)。这种由梯度介孔二氧化硅壳层和高度结晶LTA型沸石纳米晶(ZeoA)核(直径100 nm)组成的均匀ZeoA@MesoS纳米球,表现出优异的单分散性和高达921 m2/g的比表面积。更重要的是,核心微孔与壳层径向与梯度介孔之间相互连接的多孔结构有利于副产物水在毛细管吸引下的快速移动,并进一步被ZeoA核快速吸附,从而增强催化反应。因此,磺酸功能化ZeoA@MesoS的耐水性可以确保长链羧酸酯化反应的优异催化效率,不仅与磺酸功能化MesoS相比表现出更高的产率,而且即使在五次再生后也具有良好的稳定性。而且,所设计出的Pd固定于ZeoA@MesoS作为耐水催化纳米反应器时,表现出比商业Pd/C催化剂更卓越的N-甲基吲哚C–H芳基化反应性能,具有优异的产率(98%)、杰出的可重复使用性和较强的耐水性。得益于多功能的集成,所设计出的均匀梯度多级沸石@介孔核壳纳米球可以进一步作为任务导向型纳米反应器,包括通过调节微/介孔通道的大小和多位点进行分子尺寸筛选,以及通过适当选择核沸石的类型和壳结构进行协同催化反应。因此,该梯度多级多孔结构设计的应用不仅限于传统的化学催化剂,还可以用于包括储能和环境修复等多个领域。

文献来源

Chin-Te Hung, Linlin Duan, Tiancong Zhao, Liangliang Liu, Yuan Xia,Yupu Liu, Pengpeng Qiu, Ruicong Wang, Zaiwang Zhao, Wei Li, Dongyuan Zhao. Gradient Hierarchically Porous Structure for Rapid Capillary-Assisted Catalysis. J.Am. Chem. Soc. 2022. DOI: 10.1021/jacs.2c01444.

文献链接:https://doi.org/10.1021/jacs.2c01444


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/130024.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-16
下一篇2023-03-16

发表评论

登录后才能评论

评论列表(0条)

    保存