请问输出轴断裂的原因及解决的办法

请问输出轴断裂的原因及解决的办法,第1张

1 从宏观照片上可以看出是扭转疲劳断裂,由于断口太小,照的角度也不好,看不清疲劳源位置。 2 没有偏载现象,瞬断区在正中心,断口纤维流变明显。说明心部硬度相对扭矩(载荷)偏低,强度不足可能是最主要原因。 3 扫描电镜照片显示渗碳层时沿晶开裂,很正常,渗碳层强度高、脆性大,一般都是沿晶开裂,与氢脆等没有关系;但断口微观形貌一样,只不过找不到“爪型花样”。 4 有效硬化层检测结果显示硬化层分布有问题,0.2mm开始硬度太高,0.3mm处913HV不可想象,请楼主自行查找原因,是制样假象问题?还是真实检测结果? 5 既然有SEM先进仪器,就应该沿外圆查找疲劳源,然后在疲劳源处做断口观察、金相分析等。

1、断口宏、微观形貌分析

断裂辊轴的断口比较平齐,无明显塑性变形痕迹,宏观形貌呈脆性断裂形貌特征。通过断口上放射状棱线特征可溯源断裂启始部位位于(1/2)R区域的2个凹坑及其周边平滑区域。

为进一步了解断裂模式及成因,利用扫描电子显微镜(SEM)对辊轴原始断口及其附近人工断口的微观形貌特征进行观察分析。结果表明:辊轴原始断口以解理断裂特征为主,与宏观断口小刻面特征具有很好的对应关系;辊轴原始断口附近人工新断口也以解理断裂特征为主,说明该断裂辊轴材质处于脆性状态。综合辊轴宏、微观断口形貌特征,可以确定辊轴断裂模式为脆性解理断裂。

另外,在辊轴(1/2)R处截取横向折断试样,纵向断口呈典型小刻面状,未发现“白点”等缺陷特征。由此可以排除发生第一类氢脆可能性。

2、力学特性检测

在辊轴(1/2)R处圆线上4等分部位截取纵向力学拉伸和冲击性能试样,取样编号分别为A,B,C和D;在辊轴外圆表面截取硬度试样。检测结果表明,辊轴硬度检测值符合技术要求,但冲击性能明显偏低,说明辊轴处于比较严重的脆性状态。

3、化学成分分析

在辊轴断口附近常规取样进行化学成分分析。分析结果表明:辊轴的化学成分检测结果符合GB/T3077—1999《合金结构钢技术条件》的技术要求。

在辊轴(1/2)R处部位和原始断口凹坑附近区域分别取样进行氢(H)含量分析。结果表明:辊轴基体氢的质量分数为(1.3~1.7)×10-6;在原始断口凹坑附近取样进行检测所得氢的质量分数为(11,9.0,3.0,1.5,0.4)×10-6,说明氢含量在断口及其附近区域分布非常不均匀,局部存在氢含量严重偏高现象。

4、金相观察与分析

对辊轴纵截面(1/2)R部位取样进行非金属夹杂物检测。非金属夹杂物为A类(硫化物类)夹杂物小于0.5级,C类(硅酸盐类)夹杂物细系0.5级,D类(球状氧化物类)夹杂物细系1级,未见B类(氧化铝类)和DS类(单颗粒球状类)夹杂物。

对辊轴横截面各部位金相组织和显微晶粒度进行分析。结果表明:辊轴外边缘以索氏体组织为主;辊轴中部和心部以珠光体和铁素体组织为主。辊轴边缘、中部和心部晶粒度均在8.0级左右。

5、纵向残余应力测定

沿辊轴轴线和(1/2)R部位分别截取纵向试样,对试样进行研磨和电解抛光,利用X射线应力分析仪对辊轴轴线和(1/2)R部位纵向残余应力进行测定。

辊轴轴线方向残余应力值稳定在40~50MPa,为拉应力;(1/2)R部位纵向残余应力值也存在与轴向相同的趋势。需要说明的是:辊轴轴线方向残余应力测定样存在明显微裂纹,说明内应力已经有所释放,故所测残余应力值较低;而(1/2)R部位纵向残余应力测定样无明显微裂纹。

6、基体微裂纹断口观察分析

针对辊轴横向微裂纹断口进行观察分析。在微裂纹部位截取试样,将试样沿微裂纹面拉断后对该断口进行宏、微观形貌观察。结果表明,辊轴横向微裂纹宏观断口上存在类似“鱼眼”状特征。其微观特征是“鱼眼”周边呈韧窝状特征,“鱼眼”中间区域存在显微孔洞并环绕晶粒,孔洞内表面处于自由状态,呈气孔特征(;气孔内部还含有Mn,S和Ti等,这是由于辊轴在冶炼和浇注时中未能有效除掉氢等气体和夹杂物所造成的显微缺陷。

7、模拟去氢退火试验及结果分析

在辊轴(1/2)R处圆线上2等分部位截取纵向试样,取样编号为AB和CD。分别在650,840,1100℃进行以去氢为目的的退(回)火热处理:

1)当温度升高到840℃进行完全退火(即等温退火)时,基体氢的质量分数从(1.3~1.7)×10-6降至(0.1~0.2)×10-6,显微组织和断裂性质无明显改变,但冲击韧性明显提高了10~15J。说明有效的去氢退火工艺会促使氢从辊轴材质中释放出来,使辊轴材质韧性有所提高;同时也说明固溶在基体中的氢对辊轴脆性解理开裂起到了一定的促进作用。

2)CD样冲击性能提高幅度略次于AB样,这与辊轴中氢含量分布不均匀有关。

机械镀原理

据估计,全世界每年因腐蚀而报废的金属材料和设备的量约为金属年产量的四分之一到三分之一。可见,研究金属的腐蚀与防护是一项非常重要的工作。其中应用较为广泛的是电镀与热镀工艺。但这两种工艺在应用中存在着能耗较大,污染严重等缺陷。尤其是对高强度工件的镀覆,效果不理想。因为电镀中的氢脆,对工件机械强度影响极大:而热镀中,因温度过高(≥450℃)钢材产生高温退火不良影响。这些问题的存在,促使人们不断探讨新的防腐工艺。

机械镀工艺,就是欧美及日本等发达国家近二三十年来开始进入工业应用的一种新兴的表面防护技术。锌层、锡层、镉层、铝层和这些金属的混合层,都能通过机械镀获得。在混合层中,能沉积各种比例的锌和镉、锌和铝、锌和锡、镉和铝,从而提供优越的耐腐蚀防护,每种金属沉积层都有许 多耐蚀优点。其它软的延展性的金属粉末,例如:铜、黄铜、铟、金、银和铅也能被机械沉积。这高性能的镀层能在野外、工业和海洋环境中提供牺牲阳极保护,可防护10—30年或更长。近几年,机械镀以其在室温下进行、能耗小、成本低、工艺简单、配方多样、操作方便、生产效率高、无氢脆现象、环境污染少等待点,越来越受到金属零部件行业的关注,应用前景十分广阔。作者在机械镀技术工艺方面潜心研究近十年,在涂层表面光亮度、复合涂层选择、耐受中性盐雾试验时间延长等方面取得了较好进展。

1 机械镀工艺过程

机械镀工艺是将活化剂、金属粉末、冲击介质和一定量的水混合为浆料,与工件一起放人滚筒中、借助干滚筒转动产生的机械能的作用,在活化剂及冲击介质机械碰撞的共同作用下,在铁基表面逐渐形成锌镀层的过程。显然,这一过程原理既不同于热浸镀,也不同于电镀。在室温下进行,不存在高温下的冶金反应,也不存在热镀所形成的树枝状结晶组织和金属化合物,从而避免了高温退火引起的对工件强度性能的影响。该过程中没有电场直接作用在工件表面上,所以更不存在电镀过程中的还原反应,同时从根本上避免了氢脆的产生及危害。

典型的机械镀工艺大至可归纳为四个阶段:(1)表面预处理:该阶段主要是去除工件表面上的油污及氧化物使工件裸露出金属基体,以利镀覆。(2)闪镀:为防止铁基的氧化,促进镀层与基体的紧密结合,在镀覆之前,往往要在经预处理的工件表面上形成一层较薄的金属层,一般为铜层,而此过程仅需30一90s,习惯上称为“闪铜”。(3)镀覆:闪镀后即进入镀覆阶段。镀覆过程所需金属粉末和活化剂的数量,主要取决于工件表面积及镀层厚度。如在总表面积为1m2工件上,镀25µm的锌层,大约需200g锌粉。 (4)后处理:镀覆后的分离--漂洗--干燥--钝化—密封等均属此阶段。镀后工件与介质等分离、通常借助于振动筛与磁分离器进行。分离出的介质可返回滚筒重复使用,而工件则经漂洗、干燥后装箱。如需要,工件可进一步钝化或有机物封膜,以提高耐蚀性。

机械镀锌工艺按照工艺顺序可分为:脱脂→漂洗→酸洗(或喷丸)→漂洗→闪镀→机械镀覆→分离→漂洗→干燥→钝化等操作过程。

2 机械镀设备及原料

典型的机械镀设备工作主机为一端开口或半开口的多棱形滚桶,主要功能是提供机械碰撞力,并使金属粉末、活化剂与滚筒中的水能迅速形成均匀的混合浆料,以保证镀件在桶内翻转、自旋,在冲击介质作用下,镀覆上所需镀层。镀桶多为八棱形,直径和轴向长度之比不超过1:3;工作位置与水平位置呈20--30°。镀覆过程中所用冲击介质不仅要提供冲击能量,还要起到缓冲作用,以减少较重工件间的相互撞击及锋利的碎片或棱角对镀层的损害。所以除要求具有一定强度,耐磨性好外,表面还应光滑无棱角。目前最常用的是玻璃微珠,其大小介于0.5—4mm之间,由多种规格混合而成。混合比例取决于工件形状、尺寸、重量及镀层材料。一股粒径大的介质过多,镀层表面不平整,且缝隙、凹处不易形成镀层;而粒径小的介质过多,冲击力不够,镀层附着力下降。

机械镀工艺中加入的各种化学添加剂总称为活化刑。其主要作用是帮助金属粉末在水中分散,稳定镀液pH值,改善镀层表现质量。为此,活化剂通常由多种化学物质组成。为保证镀层质量,提高镀层均匀性及厚度,上述金属粉末与相应的活化剂,一般采用分批加料的方式加入、每批间隔3—5min。加料完毕,再强化冲击5—10min,以使镀层结构更加均匀致密,最终形成所需镀层。活化剂配比取决于耐盐雾时间要求、度层厚度、工件结构、表面性能等。目前,机械镀工艺的改进与发展方向主要是金属粉末合金化、寻找高效分散剂、提高致密性、光亮度和镀覆效率,降低成本,根本是延长耐腐蚀性时间。

3 镀层性能特点

机械镀层是一种由均匀的扁平状金属颗粒组成的镀层,如图2所示。按镀层厚度可分为两类:一类厚度为25.4—88.9µm,称为MG(Mechanical galvanizing),可代替热镀产品;另一类厚度小于25.4µm,称为MP(Mechanical plating),可代替电镀产品。这两类镀层,除厚度及用选上有所区别外,其它性能基本相同。机械镀层特点是:镀层外观为均匀的银白色,但色泽不如电镀,并有微小的凹凸点;镀层的均匀性、附着力、涂覆能力均较好。这一点对一些具有深洞、沟槽、螺纹的工件尤为重要;镀层耐蚀性能良好,通常用中性盐雾试验来衡量耐蚀性好坏。图2是传统的采用325目的电炉锌粉制备的机械镀锌镀层I表面形貌图,镀层中少数锌粉颗粒由原来的球形变成椭球形,并且尺寸较大的锌粉颗粒发生塑性变形的倾向更大;而尺寸较小的颗粒填充在大颗粒之间的间隙,或夹塞在变形颗粒之间。图3是作者用片状锌粉制备的机械镀锌镀层II表面形貌图。发现用片状锌粉活性明显增强,镀覆效率提高。镀层表面平整度明显改善,片状锌粉层层叠加,形成排列密集的镀层。光亮度也明显提高,钝化效果也好于镀层I。用去离子水配制5%氯化钠溶液,在35℃下进行中性盐雾试验,镀层II达到1000小时无红锈,接近达克罗涂层,这是国内文献报道中关于机械镀锌镀层耐腐蚀性较长的。

两图中显示颗粒之间有细毛状连接,这便是惰性金属的粘结作用,它与锌粉颗粒发生焊合,或者和其他夹杂物混合在一起填充间隙,形成机械镀层。因为在机械镀锌中加入比金属锌电位更正的金属的离子M2+,它在酸性镀液环境中发生化学反应:M2++Fe→Fe2+十M,产生的M以细毛刷状出现在锌粉颗粒的表面,M的产生会导致锌粉颗粒表面和镀层表面上电荷的变化,促进它们之间的相互吸附,另外M作为一新相易于依附在锌粉颗粒上形核长大,这些都会促进锌粉颗粒的聚团、吸附和沉积。

图2机械镀锌表面SEM(2000×)形貌I 图3 机械镀锌表面SEM(2000×)形貌II

4 机械镀技术的发展、现状与动态

机械镀的研究,始于50年代。1953年美国的Peen Plate Inc.取得了第一项专利技术。60年代机械镀开始应用于工业生产。不过当时仅限于垫圈、垫片、弹簧等小工件的镀锌上,而且镀覆时间长,效率低,锌粉利用率仅有20%—30%。70年代后期至80年代,随着工艺的改进;活化剂性能的提高,机械镀被广泛用于各类金属零散件,如螺栓、螺母、钉子、水泥钉及可锻铸铁管路连接件的镀锌。同时镀覆时间缩短,效率显著提高。现代的机械镀工艺,镀覆时间进一步缩短,金属粉末利用率可达90--95%,通常在30--4min内即可完成全过程,而厚度可在10一100μm之间任意调节。国外还专门制订了有关机械镀的相应标准,如美国的ASTM B635一钢铁表面机械沉积镉、锡合金镀层标准;B695一钢铁表面机械沉积锌镀层标准;B696一钢铁表面机械沉积镉镀层标准等。当前,国外的机械镀工艺,己由单纯的机械镀锌,发展到镀镉、锡、铜、银、铅、铋、铟等金属以及黄铜、镉一锡、锡一锌、锌一镉的合金。从而使镀层的性能得到进一步改善,应用范围更加广泛。

我国对机械镀的研究,始于80年代中后期。但主要还局限于机械镀锌方面,应用范围很小,同国外相比,差距较大。究其原因,主要在于对机械镀所形成的非光亮型镀层,缺乏认同,没有正确认识其优异的无电镀引起的氢脆和热镀锌引起的高温退火现象。尽管我国1999年颁布了《钢铁制件的机械镀锌》部颁标准,用机械镀锌工艺在我国机械零部件加工企业中仍是凤毛麟角,主要分布在浙江、山东、福建、上海、江苏等沿海出口加工企业,并且镀层仅仅是单成分的镀锌层,加工镀层厚度通常在20-60微米之内。对10微米以内镀层厚度的超薄镀层以及60-110微米镀层超厚镀层的组成、表面平整性、钝化、及耐蚀性能,是今后重点研究的内容。相信随着我国机械加工业的日益国际化、我国基础建设的需求以及环境保护意识的加强,机械镀产品会逐渐替代部分电镀、热镀锌产品。机械镀锌具有污染少,能耗低,镀层均匀.厚度易控制,无量脆影响,工艺简单,操作方便,镀件具有良好的机械性能和耐蚀性等特点,因而具有广阔的发展前景。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/130757.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-16
下一篇2023-03-16

发表评论

登录后才能评论

评论列表(0条)

    保存