intel的单核的conroe L 420(肉羊,相当于sempron3200+),入门级双核的PE 2140(性能介于AMD的3600+和3800+之间),PE 2160(相当于Athlon X2 4000+)
提高双低菜籽皮对反自动物营养价值的研摘要
本研究以双低菜籽皮的中性洗涤纤维(NeutralDetergentFiber,NDF)含量为评
定指标。采用混合嵌套设计从干式NaOH法(处理时间分别为d1、d2、3d)、尿素
氨化法(处理时间分别为1d0、1d5、ZOd)、碱化一氨化复合处理(处理时间分别为
15d、ZOd、25d)筛选出最佳处理组及其处理时间采用L(3‘)正交设计筛选出最
佳配比的纤维素酶、B一葡聚糖酶、木聚糖酶和a一淀粉酶处理组从而得到最佳化学
处理组和最佳复合酶制剂处理组。采用扫描电子显微镜(SacunnigEleetrno
Mcriosocpe,SEM)技术分析上述最佳处理组处理的双低菜籽皮的结构并分别以
稻草、未处理双低菜籽皮、经最佳化学组处理的双低菜籽皮、经最佳复合酶制剂组
处理的双低菜籽皮为粗料配制不同日粮,研究其对湖北麻城黑山羊的生长性能的影
响。试验结果如下:
与对照组(未处理组)相比,双低菜籽皮经干式Na0H法、尿素氨化法、碱化-
氨化复合法处理后中性洗涤纤维(NDF)含量降低,中性洗涤纤维2h4降解率升高。
双低菜籽皮经不同化学方法处理后,中性洗涤纤维(NDF)含量组间差异极显著
P(<0
.
01),中性洗涤纤维2h4降解率组间差异极显著P(<0.01)双低菜籽皮经
同种方法不同时间处理后,时间对NDF含量及中性洗涤纤维24h降解率的影响是极
显著(P<0.01)。就中性洗涤纤维2h4降解率而言,干式NaOH处理组比对照组的
分别提高了74.22%、66.16%、58,64%,尿素氨化处理组比对照组的分别提高了
63
.
81%、19.()7%、巧.64%,碱化一氨化复合处理组比对照组的分别提高了28.88%、
58
.
04%、7.79%。
双低菜籽皮经不同配比的复合酶制剂处理后NDF含量组间差异不显著
P(>.005),中性洗涤纤维2h4降解率组间差异不显著P(>.005)。与对照组相比,
NDF含量均下降,分别降低了8.15%、6.59%、8.56%、9.81%、8.42%、9.57%、
7
.
n%、7.62%、8.05%中性洗涤纤维24h降解率均有所提高,分别提高了88.07%、
89,05%、72.75%、61.42%、59.29%、54.77%、68.72%、64.96%、90.74%。
扫描电镜观察发现处理前后双低菜籽皮的物理结构变化显著。未处理的双低菜
籽皮结构紧密,细胞器清晰可见经过碱化一氨化复合处理之后,薄壁组织膨胀,
形成一些“孔穴”结构,并且大部分的细胞器解体脱落:经过复合酶制剂处理后双
低菜籽皮表面光滑,“孔穴”结构更加规则,并且细胞器基本完全解体脱落。表明双
低菜籽皮经过处理后细胞壁疏松,为瘤胃液的渗透提供有利的条件,从而提高双低
当动物营养价值的研究
菜籽皮的利用效率。
两种处理方法处理的双低菜籽皮组与稻草组相比,山羊的采食量、日增重、料
肉比差异显著(P<.005)与未处理的双低菜籽皮组相比,差异不显著P(>.005),
但山羊的采食量和日增重有所提高,料肉比下降。
结果表明,双低菜籽皮经碱化一氨化复合法在常温下处理20d后效果最佳双低
菜籽皮的最佳复合酶制剂的配比为纤维素酶0.38469、B一葡聚糖酶0.16679、木聚糖
酶0.20009和a一淀粉酶0.01259(添加比例为在5009双低菜籽皮中的含量)。碱化
一氨化复合处理和复合酶制剂处理能够提高双低菜籽皮的营养价值,并且饲喂经最
佳处理组处理的双低菜籽皮可以提高山羊的生长性能。
关键词:双低菜籽皮氨化复合酶制剂扫描电镜瘤胃尼龙袋法
目录
中文摘要···············,····································,·················,·······································……I
英文摘要······················································································,····················,··……111
1
,
前言·······························,··················································································……1
1
.
1开发双低菜籽皮饲料的重要性·················,··············································……1
1.2双低菜籽皮的特点和营养价值·······························································……2
1
.
3低质粗饲料的处理方法·····,·,··,······,··················,······································……2
1.4低质粗饲料在反当动物饲料利用中存在的问题························,··········……7
1
.
5本试验研究的目的和意义·······································································……9
2
.
材料与方法······································,·······························································……9
2.1样品的采集·································,·····························································……9
2.2处理双低菜籽皮的化学方法·····,·····························································……9
2.3处理双低菜籽皮的酶制剂方法,·········,·············································,······……10
2.4双低菜籽皮营养成分瘤胃降解率的测定···············································……n
2.5扫描电子显微镜分析···············································································……12
.26山羊饲养试验···························································································……13
2.7检测指标···································································································……13
2,8一计算公式与数据处理·······················································,·····················……‘’14
3
.
结果与分析··,·····,·······,··,,,···,····,,······································································……14
3,1双低菜籽皮的主要成分含量········,··························································一14
3
.
2化学处理双低菜籽皮的成分分析···············································,···········……14
3.3复合酶制剂处理双低菜籽皮的成分分析···············································……17
3.4扫描电镜分析处理前后双低菜籽皮结构的变化···································……20
3
.
5不同处理饲粮对山羊生长性能的影响···················································……23
4
.
讨论······,···················,···,·····,,,·····················,,····················································……23
4.1双低菜籽皮经不同方法处理效果的比较···············································……23
4
.
2不同处理对双低菜籽皮物理结构的影响········,······································……26
4
.
3不同处理饲粮对山羊生长性能的影响··················································,……26
结论···,···········,······································································································……28
参考文献·······,··················································································,···················……29
致谢··········,·····,···,·············,·····,·············································································……35
附录······················································································································……36
005届硕士学位论文
我试着用"hide-and-seek"这个词去查:冰岛语的捉迷藏应该是feluleikur (冰岛语)
hide-and-seek:a children's game in which one person searches for other people who have hidden themselves(英文解释)
Arabic: لُعْبَة الغُمّيضَه (阿拉伯语)
Czech: hra na schovávanou (捷克语)
Danish: skjul (丹麦语)
Dutch: verstoppertje (荷兰语)
Estonian: peitusemäng (爱沙尼亚语)
Finnish: piiloleikki (芬兰语)
French: cachecache (法语)
German: das Versteckspiel (德语)
Greek: κρυφτό παιχνίδι (希腊语)
Hungarian: bújócska (匈牙利语)
Icelandic: feluleikur (冰岛语)
Indonesian: petak umpet (印度尼西亚语)
Italian: nascondino (意大利语)
Japanese: かくれんぼ (日语)
Korean: 숨바꼭질 (韩语)
Latvian: paslēpes rotaļa (拉托维亚语)
Lithuanian: slėpynės (立陶宛语)
Norwegian: gjemsel (挪威语)
Polish: zabawa w chowanego (波兰语)
Portuguese (Brazil): escondeesconde (巴式葡萄牙语)
Portuguese (Portugal): jogo das escondidas (葡式葡萄牙语)
Romanian: dea vaţi ascunselea (罗马尼亚语)
Russian: прятки (俄语)
Slovak: schovávačka (斯洛伐克语)
Slovenian: skrivalnice igra (斯洛文尼亚语)
Spanish: escondite (西班牙语)
Swedish: kurragömma (瑞典语)
Turkish: saklambaç oyunu (土耳其语)
希望没错。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)