SEM、TEM、TG、XRD、AFM、红外光谱,这几个分别是测什么的?

SEM、TEM、TG、XRD、AFM、红外光谱,这几个分别是测什么的?,第1张

测什么百度一下吧,应该都有详细的测试原理及项目。

区别应该是 SEM和TEM和AFM,越来越高级,放大倍数越来越高。XRD和红外光谱这两个是没什么关系的,xrd是测试晶体结构的,可以测试晶体结构的,对于可以看出你的材料是什么。红外是靠红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知液态水的红外光谱物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。l红外主要用于有机化合物的结构鉴定在有机化学、生物化学、药物学、环境科学等许多领域。

sem的意思是:

1、abbr. 扫描式电子显微镜(scanning electron microscope);标准电子组件(Standard Electronic Modules)

2、n. (Sem)(泰、柬)森(人名);(Sem)(西、挪)塞姆(人名)

【读音】英 [,es i: 'em]

【短语】

1、SEM Analysis 扫描电镜分析 扫描电子显微镜分析 sem分析

2、sem image sem图像 sem图

3、sem break 空白时间

4、sem valor 无用

5、SEM WATCH 搜索引擎营销观察

6、TSINGHUA SEM 理学院 清华经管学院 清华大学经济管理学院 大学经济管理学院

扩展资料

sem的近义词

seminar

【读音】英 [ˈsemɪnɑː(r)]  美 [ˈsemɪnɑːr]

【意思】n. 讨论会,研讨班

【短语】

1、seminar course 研究学程 专题研究科目 研究科目

2、Olympic Seminar 奥运主题讲座

3、Advanced seminar 高级研讨会

4、Basic Seminar 突破性领导力基础课程 基本课程 真善美讲座

5、Business Seminar 商务研讨会

6、Joint Seminar 双边学术研讨会

    结构方程模型(SEM)包括连续潜变量之间的回归模型(Bollen, 1989Browne &Arminger, 1995Joreskog &Sorbom, 1979)。也就是说,这些潜变量是连续的。这里需要注意的是:1. 潜变量(latent variables)是与观察变量(Observed variables)相对的,可通过数据分析观察;2. 观察变量可以是连续的(continuous)、删失的(censored)、二进制的(binary)、有序的(ordinal)、无序的(nominal)、计数的(counts),或者是这些类别的组合形式。

    SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。

     测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。

    如何描述它们之间的关系?可以通过以下方式:

1. 若因子指标是连续的,用线性回归方程(linear regression equations);

2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

     结构模型 则在一个多元回归方程中描述了三种变量关系:

1. 因子之间的关系;

2. 观察变量之间的关系;

3. 因子和不作为因子指标的观察变量之间的关系。

    同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:

1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);

2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

    在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。

    以下特殊功能也可以通过SEM实现:

1. 单个或多组分析(Single or multiple group analysis);

2. 缺失值(Missing data);

3. 复杂的调查数据(Complex survey data);

4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);

5. 随机斜率(Random slopes);

6. 限制线性和非线性参数(Linear and non-linear parameter constraints);

7. 包括特定路径的间接作用(Indirect effects including specific paths);

8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);

9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);

10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。

    以上功能也适用于CFA和MIMIC。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/150155.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-21
下一篇2023-03-21

发表评论

登录后才能评论

评论列表(0条)

    保存