高分子的表征方法有哪些

高分子的表征方法有哪些,第1张

高分子的表征方法有哪些:‍

1,力学性能表征:模量及拉伸强度;

2,热力学表征:DCS/DTA;

3,粘度测试及表征:流变;

4,结构表征:扫描电镜(SEM)及二维广角X射线衍射(2D-WAXD);

5,化学结构分析:质谱,气液色谱 。

简单的讲,SEM是用来观察材料表面形貌的,XRD是用来检测材料晶体结构的,使用完全不同的仪器。具体说明如下:

SEM

是scanning electron microscope的缩写,指扫描电子显微镜是一种常用的材料分析手段。

扫描电子显微镜于20世纪60年代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。

目前扫描电镜的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。

它是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对x射线的采集,可得到物质化学成分的信息。正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。

XRD

即X-ray diffraction ,X射线衍射,通关对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。

X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10-8nm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布喇格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式——布喇格定律:

2d sinθ=nλ

式中λ为X射线的波长,n为任何正整数,又称衍射级数。其上限为以下条件来表示:

nmax=2dh0k0l0/λ,

dh0k0l0<λ/2

只有那些间距大于波长一半的面族才可能给出衍射,以此求纳米粒子的形貌。

当X射线以掠角θ(入射角的余角)入射到某一点阵平面间距为d的原子面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布喇格定律简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布喇格条件的反射面得到反射,测出θ后,利用布喇格公式即可确定点阵平面间距、晶胞大小和类型根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础。而在测定单晶取向的劳厄法中,所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布喇格条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。

X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是体心立方结构,β-Fe并不是一种新相而铁中的α—→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:

物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。

精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。

取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。

晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。

宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。

对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。

合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。

结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。

液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。

特殊状态下的分析 在高温、低温和瞬时的动态分析。

此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。

X射线分析的新发展:金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。

X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.

X射线是波长介于紫外线和γ射线间的电磁辐射。X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料)。用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出。电子轰击靶极时会产生高温,故靶极必须用水冷却。

XRDX-射线衍射(Wide Angle X-ray Diffraction)主要是对照标准谱图分析纳米粒子的组成,分析粒径,结晶度等。

应用时应先对所制样品的成分进行确认。在确定后,查阅相关手册标准图谱,以确定所制样品是否为所得。

盖国胜1杨玉芬2,1郝向阳1樊世民1蔡振芳1

(1.清华大学 材料系粉体工程研究室,北京 100084;2.清华大学河北清华发展研究院微纳米材料与资源利用研发中心,河北廊坊 065001)

摘要 采用化学方法对无机矿物填料表面进行包覆改性,制备出具有表面纳米化结构的复合矿物颗粒,有效地改善了原有颗粒的表面形貌,提高了比表面积。通过搅拌磨湿法研磨,讨论了包覆颗粒与基体的结合方式,初步证明了包覆颗粒与基体的结合方式为化学吸附,而非物理吸附,两者结合牢固,包覆层不易脱落。包覆矿物颗粒在PP中填充,其复合材料的力学性能有较大的改善[1~15]。

关键词 无机矿物;填料;包覆改性;表面纳米化颗粒。

第一作者简介:盖国胜(1958—),男,博士,副研究员。E-mail:gaigs@tsinghua.edu.cn。

一、引言

微米级超细碳酸钙、硅灰石是塑料或橡胶常用的无机矿物填料,需求量非常大。仅塑料行业每年就需要碳酸钙超细粉超过100×104t[1]。而传统加工技术生产的碳酸钙超细粉具有锐利的棱角和平整的晶体解理面,与聚合物的相容性差。采用偶联剂或表面活性剂进行改性,不能从根本上解决颗粒表面固有的形貌缺陷,而这些部位在微观上易成为复合材料内部的薄弱点,是导致复合材料失效的原因之一[2,3]。

纳米碳酸钙生产成本低,技术成熟,但团聚严重,均匀分散困难,在聚合物中填充难以体现纳米颗粒特有的性能[4~6]。作者利用Ca(OH)2-H2O-CO2体系制备的复合矿物颗粒发挥了微米、纳米颗粒各自的优势,弥补了颗粒形貌的不足。

二、方法与步骤

将640 g平均粒度5.2μm的重质碳酸钙微粉(山东宏达水泥有限责任公司),浓度8%、760 mL氢氧化钙溶液和700 mL热水置于反应釜中,调节矿浆温度25~30℃,充分搅拌,转速400 r/min。矿浆循环流量20 mL/s。30%的纯二氧化碳与70%的空气混合,通入反应釜,继续搅拌使气—固—液三相充分混合。PB-10型pH计用于矿浆酸碱度的在线监控,当pH值为7时,结束反应,反应持续约20 min。停止通气,过滤矿浆,烘干滤料,所得固体物料即为经表面纳米化修饰的复合碳酸钙填料。

研究表明,合理调节操作参数,如氢氧化钙浓度、矿物添加量、粒度、添加时间、CO2流量、搅拌强度和矿浆温度,同样能制备出表面粗糙的复合硅灰石、复合白云石和复合粉煤灰填料。

反应生成物纳米碳酸钙将依据异质形核原理在无机矿物颗粒表面沉积、形核、生长,实现表面纳米化修饰。由相变热力学可知[7,8],成核晶体和晶核的原子排列越相似,异质形核自由能与均质形核自由能相比就越小,异质形核自由能越小,越有利于异质形核。矿浆中添加重质碳酸钙、硅灰石等无机矿物微粉后,从热力学的角度可以证明纳米CaCO3生成物易于在这些颗粒表面成核、生长,达到表面纳米化修饰的目的。

使用的测试设备为:CSM-950 型和 CJSM-6301F型扫描电子显微镜,用于颗粒形貌观察;NOVA4000高速自动比表面仪,用于比表面积测定;PHI5300型XPS多功能电子能谱仪,分析固体样品表面的元素组成及化学状态;自制的湿法搅拌磨,检测包覆颗粒与基体的结合强度;φ30×45平行同向混炼型双螺杆挤出机和150 ZP型注塑机,用于制备力学性能检测样条。

三、结果与讨论

(一)表面形貌

笔者在Ca(OH)2-H2O-CO2系统中利用自制的装置已成功地制备表面被纳米碳酸钙包覆的无机矿物颗粒,其中碳酸钙颗粒的形貌特征如图1所示。

图1 重质碳酸钙颗粒表面修饰前后的SEM 形貌

(a)原料重质碳酸钙颗粒;(b)、(c)复合重质碳酸钙颗粒

由图1(b)、(c)可见,包覆颗粒大小均匀,粒径80nm左右,包覆率高。与包覆前相比,颗粒锐利的棱角被钝化,表面粗糙度提高,粉碎过程中形成的平整解理面已不复存在,取而代之的是纳米颗粒包覆层。通过BET测定,包覆后碳酸钙的比表面积由原料的0.66 m2·g-1提高到2.06 m2·g-1,增加了2倍以上;复合硅灰石颗粒的比表面积也由原料的1.74 m2·g-1提高到7.36 m2·g-1。

(二)包覆层与基体结合强度

1.子颗粒实际脱落时的表面能ΔE

为了进一步检验包覆层和基体的结合强度,将复合重钙在搅拌磨中湿法研磨,考察包覆层在球磨介质作用下的脱落情况。

试验采用自制的湿法搅拌磨,由Φ110mm静止磨筒与多层叶片的搅拌器构成,Φ1mm的氧化锆球作研磨介质,加入100 g物料和适量的水。电动机通过变速装置带动搅拌器旋转,转速355 r/min。研磨介质与物料作多维循环和自转运动,上下、左右产生剧烈置换,物料从而受到摩擦、冲击、剪切等作用[2]。复合碳酸钙粉在研磨30 min、45 min、60 min后的形貌变化如图2-(a)、(b)、(c)所示。

图2 复合碳酸钙粉研磨后的SEM 形貌

(a) 30 min;(b) 45 min;(c) 60 min

从图2可以看出:研磨30 min,表面仍被纳米颗粒所包覆,几乎没有发生变化;45 min时包覆颗粒有少量脱落;研磨到60 min时,包覆层全部脱落,并见明显的凹痕。搅拌磨中,单位体积磨球的动能EiB可用下式表示[9]:

中国非金属矿业

式(1)中:D为搅拌磨直径,0.11 m;DR为搅拌器直径,0.09 m;ζ为常数,0.0082;u为周向速度,0.836 m/s;ρB为磨球的密度,6310 kg/m3。从单位体积磨球动能EVB可导出有效区颗粒吸收能 :

中国非金属矿业

式(2)中:VB为磨球体积,7.924×10-5m3;VB为有效区体积,1.161×10-4m3;ρM为颗粒相对密度,2710 kg/m3;εM为被研磨颗粒自然堆积状态时的孔隙率,可忽略不计。假设颗粒在有效区内均匀分布且颗粒粒径大小均一,可由EM求出单个颗粒平均吸收能Em:

中国非金属矿业

式(3)中:M为有效区内颗粒的质量,0.1 kg;Da为被处理物料的平均粒径,5.36×10-6m;N1为有效区内的颗粒数量,2.625×1010;则Em=8.46×10-13J。

由图2可知,研磨45 min时,包覆颗粒开始脱落,此时单个颗粒的吸收能E为

中国非金属矿业

式(4)中:t为球磨时间,2700s。

根据颗粒的粉碎研磨理论,颗粒破碎过程中所吸收能量的5%~25%被转化为颗粒新增的表面能ΔE[10~14]。若以5%计算,则复合颗粒开始脱落时新增的表面能ΔE=1.14×10-10J。也就是说,只有表面能达到ΔE时,表面包覆的颗粒才开始脱落。

2.预测包覆颗粒脱落时的表面能ΔE′

假设重质碳酸钙母颗粒为立方体,表面包覆层为单层包覆,包覆层内所有子颗粒均是相同直径的球形颗粒,脱落前后颗粒表面积的变化值可表示为ΔS(m2):

中国非金属矿业

式(5)、(6)、(7)中:S1为包覆层脱落前颗粒的表面积,m2;S2为包覆层脱落后子颗粒与母颗粒的总表面积,m2;Dc为母颗粒的粒径,5.2×10-6m;d为子颗粒直径,8×10-8m;N2为子颗粒个数。

子颗粒完全从母颗粒表面脱落时,表面能的增加值ΔE′应为

中国非金属矿业

式(8)中:γc为碳酸钙表面能,0.08J/m2[11],可得ΔE′=3.894×10-11J。也就是说,当颗粒表面能增加到ΔE′时,子颗粒就可以从母颗粒表面脱落。

由计算可知,子颗粒实际脱落时的ΔE大于ΔE′,因此推断:子颗粒与母颗粒的结合方式应为化学吸附而非物理吸附,即子颗粒和母颗粒共生为一体。对复合硅灰石粉体做同样的试验,结果也是一致的。

(三) XPS分析

为了进一步分析包覆颗粒的表面特征,采用X射线光电子能谱(XPS)对硅灰石原料与复合硅灰石进行了分析。试验条件:硅灰石粉体600 g,平均粒度4.89μm,由北京国利超细粉公司提供,氢氧化钙溶液浓度6%,850 mL,矿浆温度30℃,转速400 r/min,矿浆循环流量20 mL/s。包覆前后硅灰石颗粒表面含有Ca、Si、C、O四种元素,其元素含量的变化和结合能的变化分别列于表1、表2。

分析表1,可发现硅灰石颗粒表面经纳米化修饰后,Ca元素的含量明显增多。Ca元素相对Si元素其比例也明显增大,Ca/Si之比由原料的约1∶1增加到包覆后的2∶1。

表1 硅灰石颗粒表面元素含量(wB/%)

注:反应10 min后所取样品为1#,反应结束时样品为2#。

表2 硅灰石颗粒表面各元素的结合能(eV)

分析表2,发现C、Ca、Si、O元素的峰位均发生了一定的化学位移。原料硅灰石表面C元素峰位为284.8,应为污染碳,其表面本身没有碳键。Ca元素的结合能在硅灰石颗粒表面纳米化修饰过程中呈降低趋势。初始阶段,Ca元素主要处于>SiO3的化学环境中,由于Si元素的电负性较大,Ca原子周围电子浓度较低,对其内层电子的屏蔽作用减弱,Ca原子的内层电子结合能较大。随着反应的进行,纳米碳酸钙不断在硅灰石颗粒表面沉积,即表面Ca原子周围逐渐由>SiO3的化学环境转变为>CO3的化学环境。而C元素的电负性要比Si元素小,因此Ca原子周围的电子密度将有所增加,对其内层电子的屏蔽作用增强,从而Ca原子的内层电子结合能变小,表现为其XPS峰位值减小。反应结束后,硅灰石表面逐渐被纳米碳酸钙覆盖,Ca元素的结合能与纯碳酸钙样品中Ca元素的结合能是一致的。结合XRD物相分析[15],可推断:硅灰石颗粒表面包覆颗粒应为纳米碳酸钙。

(四)填充

对聚丙烯(PP),分别以未包覆和包覆后的重质碳酸钙作填料进行填充性能试验,填充前使用硬脂酸进行改性。经双螺杆挤出机和注塑机按GB1040-92注射成型,在液氮气氛下冷冻,快速冲击,断口表面喷金,SEM观察断口形貌,如图3所示。

图3表明:未经包覆的碳酸钙直接在PP中填充,其颗粒和PP基体的界面结合松散,可见明显的沟壑和裂缝,见图3-(a)。而包覆碳酸钙颗粒与PP 基体的界面结合紧密,相容性较好,见图3-(b)。这是因为复合颗粒粗糙的表面及钝化的棱角增加了与 PP 基体接触的机会,改善了界面结合性能。

图3 PP基复合材料断口的SEM形貌

(a)填充未包覆重质碳酸钙颗粒;(b)填充包覆重质碳酸钙颗粒

四、结论

1)在Ca(OH)2-H2O-CO2系统中,借助异质形核原理能有效地改善无机矿物颗粒的表面形貌,表面粗糙,比表面积提高2倍以上。

2)包覆颗粒通过化学吸附牢固地与被包覆颗粒结合,不易脱落。

3)包覆后的粉体作填料,改善了PP复合材料的界面结合性能。

参考文献

[1]刘英俊.非金属矿物在塑料工业中应用现状及发展趋势.中国非金属矿工业导刊,2003,增刊:6-12

[2]盖国胜.超细雨粉碎分级技术,(第一版) .北京:中国轻工业出版社,2000,261-272

[3]Sutherland I,Maton D,Harrison D L.Filler surfaces and composite properties.Composite Interfaces,1998,5(6):498-502

[4]吴春蕾,章明秋,容敏智.纳米SiO2表面接枝聚合改性及其聚丙烯基复合材料的力学性能.复合材料学报,2002,19(6):61-67

[5]刘阳桥.高濂(Liu YanQiao,et al.)纳米Y-TZP悬浮液的团聚抑制研究.无机材料学报(Journal of Inorganic Materials),2002,17(6):1292-1296

[6]许育东,刘宁,曾庆梅等.纳米改性金属陶瓷的组织和力学性能.复合材料学报,2003,1:33-37

[7]吴德海,任家烈,陈森灿.近代材料加工原理,北京:清华大学出版社,1997,115-117

[8]崔爱莉,王亭杰,金涌等.二氧化钛表面包覆化硅纳米膜的热力学研究.高等学校化学学报,2001,22(9):1543-1545

[9]张平亮.湿式搅拌磨微粉碎技术的研究.化工装备技术,1995,16(6):26-31

[10]Fuerstenau D W,Abouzeid A Z M.The energy efficiency of ball milling in comminution.Inter.J.Miner.Process.,2002,(67):161-185

[11]郑水林.超细粉碎.北京:中国建材工业出版社,1999,36-42

[12]Zemskov E P.Time-dependent particle-size distributions in comminution.Powder Technology,1999,102:71-74

[13]Gutsche 0,Fuerstenau D W.Fracture kinetics of particle bed comminution—ramifications for fines production and mill optimization.Powder Technology,1999,105:113-118

[14]Alberto Carpinteri,Nicola Pugno.Intern.A fractal comminution approach to evaluate the drilling energy dissipation.J.Numer.Anal.Meth.Geomech.,2002,26:499-513

[15]樊世民,杨玉芬,盖国胜等.表面纳米化硅灰石复合颗粒的制备研究.稀有金属材料与工程,2003,32(增刊1):702-705

Nanosized Particles Coating of Inorganic Mineral Filler Surface & Characterization

Gai Guosheng1,Yang Yufen2,1,Hao Xiangyang1,Fan Shimin1,Cai Zhenfang1

(1.Powder Technology R & D Group,Department of Material Science and Engineering,Tsinghua University,Beijing 100084,China;2.Micron-Nano Materials & Resource Utilization R &D Center,Institute of Tsinghua University,Hebei Tsinghua Science Park,Langfang Economic Development Zone,Jinyuan Road,Langfang,065001,Hebei,China)

Abstract:Composite mineral particles with nano-structured surface,which effectively improve surface morphology of the originals and increase specific surface area,had been successfully prepared by using chemical method.Through wet grinding in stirring mill,coalescence between coating particles and the base was investigated.The preliminary conclusion gained showed that coating particles are not easy to be peeled off from the base because of chemical absorption.The mechanical properties of the composite were greatly improved,when the coated mineral particles were filled in polypropylene.

Key words:inorganic mineral,filler,coating,surface nano-structured particle.


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/150872.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-21
下一篇2023-03-21

发表评论

登录后才能评论

评论列表(0条)

    保存