怎么用sem模型分析顾客满意度

怎么用sem模型分析顾客满意度,第1张

结构方程模型(Structural equation modeling,

SEM)是一种融合了因素分析和路径分析的多元统计技术。它的强势在于对多变量间交互关系的定量研究。在近三十年内,SEM大量的应用于社会科学及行为科学的领域里,并在近几年开始逐渐应用于市场研究中。图中的Xn是待构建的测量指标,λ值表示各指标对上级指标的影响大小,ζn和δn表示误差,是受模型外因素影响的部分,如价格满意度等其他因素。由上图可以看出,服务方面的感知满意度对总体满意度的影响远高于产品满意度,再结合服务满意度的得分情况,可以得出结论,该通信分公司应着重改善服务满意度。

顾客满意度就是顾客认为产品或服务是否达到或超过他的预期的一种感受。结构方程模型(SEM)就是对顾客满意度的研究采用的模型方法之一。其目的在于探索事物间的因果关系,并将这种关系用因果模型、路径图等形式加以表述。

SEM模型的基本框架图册在模型中包括两类变量:一类为观测变量,是可以通过访谈或其他方式调查得到的,用长方形表示一类为结构变量,是无法直接观察的变量,又称为潜变量,用椭圆形表示。

各变量之间均存在一定的关系,这种关系是可以计算的。计算出来的值就叫参数,参数值的大小,意味着该指标对满意度的影响的大小,都是直接决定顾客购买

与否的重要因素。如果能科学地测算出参数值,就可以找出影响顾客满意度的关键绩效因素,引导企业进行完善或者改进,达到快速提升顾客满意度的目的。

1、放大率:

与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。

所以,SEM中,透镜与放大率无关。

2、场深:

在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。

3、作用体积:

电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。

4、工作距离:

工作距离指从物镜到样品最高点的垂直距离。

如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。

5、成象:

次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。

6、表面分析:

欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。

表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。

观察方法:

如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。

尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。

扩展资料:

SEM扫描电镜图的分析方法:

从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。

图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。

将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。

参考资料:百度百科-扫描电子显微镜

SEM简单介绍,以下资料来源

因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。

一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。

历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).

SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。

因果关系:

究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。

举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:

3. 这时还有可能出现更多的潜在变量:

这里我又举另外一个例子,回归模型

在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。

我们在举另外一个例子“路径分析”

路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。

在这里我们总结一下:

回归分析简单的说就是:X真的影响Y 吗?

路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。

在这里要提一下因素模型(factor model)

在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。

举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。

相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。

这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/152456.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-21
下一篇2023-03-21

发表评论

登录后才能评论

评论列表(0条)

    保存