[FMS]什么是FMS?FMS的传输协议与FMS的特色

[FMS]什么是FMS?FMS的传输协议与FMS的特色,第1张

后来该名为Flash Media Server(简称FMS),使用FMS你只需要配备Web摄像头和麦克风,并加上十几行ActionScript脚本便可以完成一个电视会议系统。 FMS给全世界的人带来一种全新的通讯方式。有了FMS服务器,您可以参加实时网络会议;使用FMS的功能在工作中进行协作以及通过Internet或企业Intranet共享信息。 还不只是这一点,Flash Player的强大功能使得实时通讯和应用程序的集成由梦想变为现实,这正是未来网络软件发展的趋势,这都是Flash Player惹的“火”。 Flash Media Server(简称FMS)服务器是用于用户之间相互通讯的新平台,它集成了Flash多媒体交互的特性,又添加了实时音频、实时视频和实时数据流等新特色,使用该平台,你可以通过网络存储录制下来的音频、视频,也可以共享数据对象,并且可以将这些音频、视频和共享数据对象传递给多个客户端,实现实时同步共享。该平台集成了通讯功能和应用程序功能,它通过Flash Player(Flash Player 6或更高)在客户端提供音频共享、视频共享和共享数据流,为用户带来了更为丰富的体验。 二、FMS的传输协议 FMS使用实时通讯协议(RTMP),RTMP 是一种未加密的TCP/IP协议,专门设计用来高速传送音频、视频和数据信息。 使用FMS可以捕获(甚至录制)用户客户端的视频和音频流。信息通过FMS使用Real-Time Messaging Protocol (RTMP)协议被传递到客户端(用户计算机上的Flash Player)。当一个Flash影片应用程序要使用 FMS时,Flash Player就连接到服务器,这样就在客户端Flash Player和FMS之间提供了往复的源源不断的信息流,称为network stream(网络流)。其他的用户也可以同时连接到相同的FMS接收信息、更新数据以及音频和视频,这些都是“网络流”。 三、FMS的特色 FMS是一个完全基于软件环境的多媒体实时通讯环境,代表了当前实时通讯领域内的发展方向,并且,其自身也融合了大量的新特色,用于创建下一代通讯应用程序,这些新特色包括:1、它提供了一个高效高性能的运行时,该“运行时”不但可以用于执行代码、处理数据内容,并且还可以进行通讯。2、它将内容、通讯功能和应用程序界面集成进一个通用环境,这个通用环境就是Flash Player,通过强大且分布广泛的Flash Player,使得通过FMS进行通讯变得更加便利。3、它为交互性提供了强大、高扩展性的对象模型。在为FMS开发Flash通讯应用程序的过程中,您就会慢慢认识到FMS无处不在的面向对象开发的特点。4、它还建立了一个高效的组件架构模型,使用该组件架构模型可以创建高效的Flash通讯组件,而使用组件和其它的可重用模块,可以使你快速的开发基于FMS的通讯应用程序。5、它还允许使用应用程序服务器提供的web服务和数据服务,从而可以和其它的应用服务器技术结合起来以创建功能更强大、更完整的富媒体应用程序。6、它并且可以识别那些处于连接状态和处于未连接状态的客户端,以降低网络负载。7、使用它,你可以将通讯应用程序客户端轻松的部署在多个平台和设备上,这多亏了Flash Player的广泛使用。 使用FMS和Flash创作环境,你可以非常轻松迅速的创建即时通讯应用程序,它可以让两个或多个的用户实现即时交流(交流可以使用文字、音频和视频)。例如,你可以使用FMS创建会议系统、在线社区、客户支持、销售支持、培训、远程展示或者即时消息系统。FMS是一个实时数据流平台,使用该平台加上客户端Flash Player的支持,可以将实时的数据流通过网络传递到Internet、PDA、iTV或者其它的设备上。 FMS的功能平台由两部分组成:服务器提供通讯方式;Flash影片应用程序(SWF文件)提供终端用户界面。你可以使用Flash创作工具作为开发环境创建Flash影片应用程序,该影片应用程序使用FMS提供的服务(也就是位于FMS上的Flash通讯应用程序)。有时你也可以编写服务端脚本为通讯应用程序添加新的功能,使用服务端脚本可以更灵活的控制共享状态信息,并且可以作为一个负载平衡器调节多用户之间的实时交互。

Flash Media Server (简称FMS)

服务器是用于用户之间相互通讯的新平台

它集成了Flash多媒体交互的特性

又添加了实时音频和实时数据流等新特色

使用该平台,你可以通过网络存储录制下来的音频、视频,也可以共享数据对象,并且可以将这些音频、视频和共享数据对象传递给多个客户端,实现实时同步共享。该平台集成了通讯功能和应用程序功能,它通过Flash Player(Flash player6或更高)在客户端提供音频共享,视频共享和数据流。

FMS是一个完全基于软件环境的多媒体实时通讯环境,代表了当前实时通讯领域内的发展的方向,并且,其自身也融合了大量的新特色,用于创建下一代通讯应用程序

柔性制造系统是由统一的信息控制系统、物料储运系统和一组数字控制加工设备组成,能适应加工对象变换的自动化机械制造系统,英文缩写为FMS。

FMS的工艺基础是成组技术,它按照成组的加工对象确定工艺过程,选择相适应的数控加工设备和工件、工具等物料的储运系统,并由计算机进行控制,故能自动调整并实现一定范围内多种工件的成批高效生产(即具有“柔性”),并能及时地改变产品以满足市场需求。

FMS兼有加工制造和部分生产管理两种功能,因此能综合地提高生产效益。FMS的工艺范围正在不断扩大,可以包括毛坯制造、机械加工、装配和质量检验等。80年代中期投入使用的FMS,大都用于切削加工,也有用于冲压和焊接的。

采用FMS的主要技术经济效果是:能按装配作业配套需要,及时安排所需零件的加工,实现及时生产,从而减少毛坯和在制品的库存量,及相应的流动资金占用量,缩短生产周期;提高设备的利用率,减少设备数量和厂房面积;减少直接劳动力,在少人看管条件下可实现昼夜24小时的连续“无人化生产”;提高产品质量的一致性。

1967年,英国莫林斯公司首次根据威廉森提出的FMS基本概念,研制了“系统24”。其主要设备是六台模块化结构的多工序数控机床,目标是在无人看管条件下,实现昼夜24小时连续加工,但最终由于经济和技术上的困难而未全部建成。

同年,美国的怀特·森斯特兰公司建成 Omniline I系统,它由八台加工中心和两台多轴钻床组成,工件被装在托盘上的夹具中,按固定顺序以一定节拍在各机床间传送和进行加工。这种柔性自动化设备适于少品种、大批量生产中使用,在形式上与传统的自动生产线相似,所以也叫柔性自动线。日本、前苏联、德国等也都在60年代末至70年代初,先后开展了FMS的研制工作。

1976年,日本发那科公司展出了由加工中心和工业机器人组成的柔性制造单元(简称FMC),为发展FMS提供了重要的设备形式。柔性制造单元(FMC)一般由1~2台数控机床与物料传送装置组成,有独立的工件储存站和单元控制系统,能在机床上自动装卸工件,甚至自动检测工件,可实现有限工序的连续生产,适于多品种小批量生产应用。

70年代末期,FMS在技术上和数量上都有较大发展,80年代初期已进入实用阶段,其中以由3~5台设备组成的FMS为最多,但也有规模更庞大的系统投入使用。

1982年,日本发那科公司建成自动化电机加工车间,由60个柔性制造单元(包括50个工业机器人)和一个立体仓库组成,另有两台自动引导台车传送毛坯和工件,此外还有一个无人化电机装配车间,它们都能连续24小时运转。

这种自动化和无人化车间,是向实现计算机集成的自动化工厂迈出的重要一步。与此同时,还出现了若干仅具有FMS基本特征,但自动化程度不很完善的经济型FMS,使FMS的设计思想和技术成就得到普及应用。

典型的柔性制造系统由数字控制加工设备、物料储运系统和信息控制系统组成。加工设备主要采用加工中心和数控车床,前者用于加工箱体类和板类零件,后者则用于加工轴类和盘类零件。中、大批量少品种生产中所用的FMS,常采用可更换主轴箱的加工中心,以获得更高的生产效率。

储存和搬运系统搬运的的物料有毛坯、工件、刀具、夹具、检具和切屑等;储存物料的方法有平面布置的托盘库,也有储存量较大的桁道式立体仓库。毛坯一般先由工人装入托盘上的夹具中,并储存在自动仓库中的特定区域内,然后由自动搬运系统根据物料管理计算机的指令送到指定的工位。固定轨道式台车和传送滚道适用于按工艺顺序排列设备的FMS,自动引导台车搬送物料的顺序则与设备排列位置无关,具有较大灵活性。

工业机器人可在有限的范围内为1~4台机床输送和装卸工件,对于较大的工件常利用托盘自动交换装置(简称APC)来传送,也可采用在轨道上行走的机器人,同时完成工件的传送和装卸。磨损了的刀具可以逐个从刀库中取出更换,也可由备用的子刀库取代装满待换刀具的刀库。车床卡盘的卡爪、特种夹具和专用加工中心的主轴箱也可以自动更换。切屑运送和处理系统是保证 FMS连续正常工作的必要条件,一般根据切屑的形状、排除量和处理要求来选择经济的结构方案。

FMS信息控制系统的结构组成形式很多,但一般多采用群控方式的递阶系统。第一级为各个工艺设备的计算机数控装置(CNC),实现各的口工过程的控制;第二级为群控计算机,负责把来自第三级计算机的生产计划和数控指令等信息,分配给第一级中有关设备的数控装置,同时把它们的运转状况信息上报给上级计算机;第三级是FMS的主计算机(控制计算机),其功能是制订生产作业计划,实施FMS运行状态的管理,及各种数据的管理;第四级是全厂的管理计算机。

性能完善的软件是实现FMS功能的基础,除支持计算机工作的系统软件外,数量更多的是根据使用要求和用户经验所发展的专门应用软件,大体上包括控制软件(控制机床、物料储运系统、检验装置和监视系统)、计划管理软件(调度管理、质量管理、库存管理、工装管理等)和数据管理软件(仿真、检索和各种数据库)等。

为保证FMS的连续自动运转,须对刀具和切削过程进行监视,可能采用的方法有:测量机床主轴电机输出的电流功率,或主轴的扭矩;利用传感器拾取刀具破裂的信号;利用接触测头直接测量刀具的刀刃尺寸或工件加工面尺寸的变化;累积计算刀具的切削时间以进行刀具寿命管理。此外,还可利用接触测头来测量机床热变形和工件安装误差,并据此对其进行补偿。

柔性制造系统按机床与搬运系统的相互关系可分为直线型、循环型、网络型和单元型。加工工件品种少、柔性要求小的制造系统多采用直线布局,虽然加工顺序不能改变,但管理容易;单元型具有较大柔性,易于扩展,但调度作业的程序设计比较复杂。

柔性制造系统未来将向发展各种工艺内容的柔性制造单元和小型FMS;完善FMS的自动化功能;扩大FMS完成的作业内容,并与计算机辅助设计和辅助制造技术(CAD/CAM)相结合,向全盘自动化工厂方向发展。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/154561.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-22
下一篇2023-03-22

发表评论

登录后才能评论

评论列表(0条)

    保存