1、 一种是计算数据中observed variables indicators (变量)
之间的相关系数(correlations)的个数,一般用k来表示变量的个数,其相关系数的个数则为 k X
(k–1) / 2。如你的例子中有12个变量,它们之间的相关系数应该有12 X 11 / 2 = 66。
2、另一种是计算数据所有变量之间的variance-covariance (方差-协方差) 的个数,公式为 k X (k + 1) / 2。在本例中,共有
12 X 13 /2 = 78。
3、“模型所需的信息”也有两种对应的算法。与相关系数对应的算法是模型中所需估计的parameters
(参数),包括factor loadings (因子负荷,即λ,本例中有12个)、coefficients of exogenous factors
(自变量因子对因变量因子的影响系数,即γ,本例中有2个)、 coefficients of endogenous factors
(因变量因子对因变量因子的影响系数,即в,本例中有1个),三者相加共有 12 + 2 + 1 = 15个参数需要被估计。
如果按方差-协方差计算的话,那么需要被估计的参数,除了以上的λ、γ和в以外,还需要加上每个errors
of indicators(变量的残差,即δ和ε,本例中有12个),四者相加为 12 + 2 + 1 + 12 = 27。
SEM简单介绍,以下资料来源
因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。
一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。
历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).
SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。
因果关系:
究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。
举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:
3. 这时还有可能出现更多的潜在变量:
这里我又举另外一个例子,回归模型
在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。
我们在举另外一个例子“路径分析”
路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。
在这里我们总结一下:
回归分析简单的说就是:X真的影响Y 吗?
路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。
在这里要提一下因素模型(factor model)
在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。
举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。
相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。
这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)