结构方程模型适配度指标:
1、x2值:显著性概率值p>0.05(未达显著水平),x2使用样本数为100至200。
2、GFI值:>0.90。
3、AGFI值:>0.90。
4、RMR值:<0.05。
绍结构方程模型
(SEM)的概念与Amos G raphics窗口界面的基本操作;后半部以各种实例介绍Amos G raphics在各种SEM模型中的应用。全书采用AMOS图像界面,完全没有复杂的SEM理论推导和语法,最大的特点就是对利用AMOS进行结构方程模型各种分析的每一个步骤都有详细的讲解和图示。
SEM简单介绍,以下资料来源
因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。
一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。
历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).
SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。
因果关系:
究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。
举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:
3. 这时还有可能出现更多的潜在变量:
这里我又举另外一个例子,回归模型
在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。
我们在举另外一个例子“路径分析”
路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。
在这里我们总结一下:
回归分析简单的说就是:X真的影响Y 吗?
路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。
在这里要提一下因素模型(factor model)
在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。
举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。
相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。
这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。
(1)功能很强大
(1)模型回归系数汇总表格
(1)路径影响关系MI-调整影响关系
相关链接:
链接1 :结构方程模型(Structural Equation Model, SEM) https://zhuanlan.zhihu.com/p/138837728
链接2 :SPSSAU教程-结构方程模型 SEMhttps://spssau.com/helps/questionnaire/semAnalyse.html
链接3 :在线spss】数据分析实战教学之结构方程模型-SPSSAU实现 https://www.bilibili.com/video/av69372102
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)