用 SEM 对合成样品的显微结构进行分析发现 ( 图 5. 13) : 在 1300℃下样品结构比较松散,很难发现莫来石晶体的存在,但 XRD 分析告诉我们已经有 70% 以上的莫来石生成,说明 1300℃下样品中的莫来石晶体非常细小,并且被玻璃质所包裹,难以分辨。从1400℃ 开始,能够明显看出莫来石晶体存在,但晶体依然较小,呈针状,这些晶体在样品的孔隙空间发育良好,在致密部分仍然难以分辨。当温度达到 1500℃时,莫来石晶体已经由原来的针状发育成柱状,晶体尺寸明显变大,样品结构也变得致密。我们将部分样品的新鲜断裂面用浓度为 40%的氢氟酸 ( HF) 侵蚀 20 min,在 IB-3 离子溅射镀膜仪中喷镀10 ~ 20 nm 金膜后,放于 SEM 下观察,原来不太明显的莫来石晶体便清晰可见。
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
图 5. 13 合成莫来石样品的 SEM 图像
莫来石晶体大小不一,一般呈交织状。将同等条件下合成的样品相对比,A 系列的莫来石晶体明显大于 B 系列的莫来石晶体,其长径比 ( 长度与直径之比) 在 A 系列中也明显大于 B 系列,Al2O3含量越高,莫来石的晶体尺寸就相应越小。这是因为样品中杂质含量较多时,对莫来石晶体的增长有利。许多研究表明,形成各向异性莫来石通常需要液相的存在,而缺乏液相的存在会导致等轴莫来石的生成 ( Hong 等,1998Huang 等,2000Kong 等,2003) 。大小不一的莫来石交织存在,也归因于粉煤灰形成过程中勃姆石矿物的贡献,因为在利用高岭石和氧化铝反应形成莫来石的配料中若加入 1% ~ 7% 的勃姆石会产生这种大小莫来石晶体的相互混杂现象 ( Viswabaskaran 等,2003) 。
杂质数量与成分历来都是烧结合成莫来石所关心的问题。Johnson 等 ( 1982) 在他们的研究文献中总结了众多的观点,即有人认为 1300℃下合成的莫来石中固溶 Fe2O3的极限可以达到 7. 7%,多数认为在大约 1300 ~ 1400℃ 时莫来石固溶 Fe2O3的含量为 6% ~12% ,这是因为 Fe3 +与 Al3 +具有相似的离子半径和电荷,铁的存在能够降低合成温度,提高莫来石的晶体尺寸。新的研究表明,Fe3 +在 900℃时就能够进入莫来石的晶格中,从而增大莫来石晶体的尺寸,温度从 900℃ 增加到 1400℃,Fe3 +进入莫来石的数量随之增加,高于 11%时会出现铁尖晶石相,进入莫来石晶格中的 Fe3 +主要位于八面体的位置( Ocana 等,2000) ,Fe3 +的替代可以使 3∶2 莫来石 Al4Si2O10最终转变为 Al5. 6Fe0. 4Si2O13( Ronchetti 等,2001) 。
TiO2在莫来石中的固溶量低于 Fe2O3,为 2% ~ 4% ( Johnson 等,1982) ,TiO2能够降低液相的黏度和莫来石相的形成温度,从而导致各向异性莫来石的增长 ( Hong 等,1998) ,少量的 TiO2可以借助晶界固熔促进烧结致密化 ( 高振昕等,2002) ,而且可以增加烧制品的韧性,但过量的 TiO2( 一般大于 4. 5% ) 则会破坏制品的热稳定性和高温使用效能。
由于 Fe2O3在 TiO2存在的条件下可与 Al2O3反应形成含铁的钛酸铝,降低高温制品的力学性能,所以当二者共存时应降低它们的含量,在高铝制品中 Fe2O3含量应控制在2% ~ 3% 以下,并且使 Fe2O3进入结晶相形成固溶体,防止 TiO2和 Fe2O3同时进入玻璃相 ( 任国斌等,1988) 。
CaO 在莫来石中的固溶量大约低于 1% ,含量 2% 的 CaO 可以引起莫来石晶体的增长与膨胀,并使莫来石晶体保持多角形 ( Johnson 等,1982) 。
MgO 的 作 用 与 CaO 相 同,但 它 引 起 的 线 膨胀 系 数 要比 CaO 小 许 多 ( 顾幸勇 等,2001) ,配料中加入 3% 的 MgO 在 1600℃ 下恒温 3 h 还能将样品的密度从 2. 53 g / cm3提高到 2. 91 g/cm3,因为 MgO 能够通过改变晶格间的扩散加速致密化的进程,但过量增加MgO 会导致样品膨胀和强度降低 ( Viswabaskaran 等,2003) 。
K2O、Na2O 的存在对合成莫来石的影响最大,它们不但抑制莫来石的形成,而且在高温下还会导致莫来石的分解,生成霞石质液相和刚玉 ( 任国斌等,1988Johnson 等,1982) ,其中 Na2O 的影响比 K2O 大,所以在标准 《烧结莫来石》 ( YB / T5267—2005) 中主要限制 Na2O 含量。
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
从上面的讨论可以看出,准格尔电厂粉煤灰中的杂质含量主要是 CaO ( 4. 22%) ,其次 是 Fe2O3( 1. 95% ) 、 TiO2( 2. 22% ) 、 MgO ( 0. 74% ) 和 K2O ( 0. 49% ) 、 Na2O( 0. 11% ) 。经 20% 盐酸处理后 CaO 含量降至 1% 以下,其他杂质含量也明显降低。这种高铝低杂质的特殊粉煤灰非常适宜用来合成莫来石,即使未经盐酸处理也能够合成出含量超过 70%的莫来石,而含量在 60%以上的莫来石材料,就有良好的高温热稳定性能 ( 陈震宙等,1994) 。
( 1) 合成样品的收缩率
成型试样经游标卡尺测量,获得 12 个样品的平均高度为 42. 3 mm,平均直径为18. 1 mm,平均密度为 1. 67 g / cm3,不同配比试样之间的差异很小,几乎可以忽略不计。
将成型试样烧成前后的高度和直径用游标卡尺分别测量并加以记录,经计算得出烧成试样的纵向、横向收缩率,见表 6. 8。
总体而言,烧结试样的收缩率随温度的增加而增加,纵向收缩率明显高于横向收缩率随恒温时间延长,试样的收缩率有增大的趋势。A 系列样品的收缩率高于 B、C 系列,B、C 系列之间收缩率差异不大,说明未经酸洗的粉煤灰由于杂质含量较高,烧结时产生的液相含量较高,使之合成样品的收缩率增加。B、C 系列横向收缩率与工业用堇青石的收缩率 6% ± 接近。
试样收缩的主要原因是粉煤灰颗粒和粉煤灰中的空心微珠在高温下熔融而造成,在细磨 5 h 后的样品中仍能发现为数众多的微珠存在,其直径在数微米之下,即使增加细磨时间也无济于事,堇青石的形成和重结晶只能部分抵消这种作用。所以,直接利用粉煤灰制备烧结堇青石制品是不切实际的,因为在生产过程中如此大的收缩率,很难控制烧结制品的外观尺寸达到设计要求。以粉煤灰为原料制备耐火或陶瓷制品时,只能用粉煤灰的烧结料作为它们的制备原料,经过二次烧结其收缩量才会大大降低。所以本次以高铝粉煤灰合成的堇青石也只作为耐火材料或陶瓷材料的原料使用,并非直接能够制成耐火或陶瓷制品,这方面应当引起我们足够的重视。
( 2) 合成样品的物理性能
利用排水驱替法 ( 阿基米得法) 测得合成堇青石样品的物理性能,见表 6. 9。
表 6. 8 烧成堇青石试样的收缩率
表 6. 9 烧成堇青石试样的物理性能
从表 6. 9 中可以看出,A 系列样品的吸水率、显气孔率明显低于 B、C 系列样品,A系列样品的表观体积密度也略低于 B、C 系列样品。从 A→B→C 合成堇青石样品的吸水率变化为 0. 32%→8. 26% →6. 55%,显气孔率变化为 0. 66% →19. 74% →16. 11%,平均密度变化为 2. 09→2. 36→2. 41 g/cm3。B 系列样品吸水率和显气孔率较大,与该试样配料中酸洗粉煤灰含量略高于 C 系列有关。
就密度变化而言,C 系列样品最高。同一系列样品,随温度增高和恒温时间延长,合成样品的吸水率和显气孔率有降低的趋势,降低幅度较大样品密度尽管也有降低趋势,但降低的幅度较小,这可能与烧结样品中堇青石晶体的增生长大造成闭气孔增多有关恒温时间对样品密度几乎没有影响。堇青石的理论密度为2. 48 g/cm3,天然堇青石的密度可达 2. 53 ~2. 78 g/cm3,工业用堇青石密度一般在 2. 35 g /cm3左右。此次实验获得的堇青石试样密度,可与 Goren 等 ( 2006) 采用天然原料合成的堇青石样品相媲美 ( 1350 ℃ ×1 h为 2. 32 g / cm3,1400 × 1 h 为 2. 47 g /cm3) 。
( 3) 合成样品的力学性能
将烧结后的圆柱形试样两端切割为平整的平面,用 RMT-150B 型岩石力学多功能试验机进行试样的单轴压缩破坏试验,得到试样的应力-应变全过程曲线,获得烧结试样的单轴抗压强度参数。图 6. 13 为部分试样的单轴抗压强度测试结果。
图 6. 13 合成堇青石样品的单轴抗压强度
测得试样的单轴抗压强度离散性很大,变化范围为 60 ~ 284 MPa,平均抗压强度为139 MPa。抗压强度从小到大排列顺序为 A1→B1→C2→B4→A2 ( 表 6. 10) ,它们随烧结温度和恒温时间的变化规律不明显。个别试样与 Kobayashi 等 ( 2000) 采用超细粉高岭石和氢氧化镁在 1350 ℃ ×1 h 烧结合成堇青石的破裂压力 175 MPa 相媲美。
表 6. 10 烧成堇青石试样的单轴抗压强度
( 4) 合成样品的物相分析
采用德国 Bruker AXS 公司生产的 D8 ADVANCE X-射线衍射仪,对烧结合成堇青石样品进行物相分析,获得烧结试样的矿物种类和含量,以及试样中玻璃相的数量,有助于优化实验参数。不同物相的多晶衍射谱,在衍射峰的数量、2θ 位置及强度上总有一些不同,具有物相特征。几个物相的混合物的衍射谱,是各物相多晶衍射谱的权重叠加,因而将混合物的衍射谱与各种单一物相的标准衍射谱进行匹配,可以解析出混合物的各组成相。
从 XRD 曲线 ( 图 6. 14) 可以看出,A 系列样品的物相组成主要是堇青石,同时还含有极少量的钙长石和尖晶石XRD 基线呈水平,表明几乎不含玻璃相。也就是说,样品中的矿物种类单一,几乎全部由堇青石矿物组成。
图 6. 14 A 系列堇青石样品在不同烧结温度下的 XRD 图谱C—堇青石A—钙长石S—尖晶石
根据烧结温度和晶格间距 d 值判定 ( JCPDS 卡: ,所有堇青石均为 α-堇青石,即印度石。图 6. 14 中显示,1350℃ 与 1370℃ 烧结温度下获得的堇青石样品物相组成相同,但 1370℃ 下烧结堇青石的峰值强度明显增强,恒温时间由 2 h 增加到 3 h 对合成堇青石影响不大。为进一步说明样品的物相组成特点,将单个样品的 XRD 曲线示于图 6. 15,以揭示出物相精确的衍射峰位置。
C 系列样品的 XRD 曲线见图 6. 16,图中显示主晶相为堇青石,同时含有极其少量的次晶相莫来石和尖晶石。与 A 系列相比,钙长石消失,出现少量的莫来石晶相尖晶石结晶强度明显降低。C 系列中,1350℃与 1370℃烧结堇青石衍射峰强度似乎没有明显变化,恒温时间对其影响也不大。图 6. 17 给出了单个样品详细晶相的 XRD 曲线。
对比 A 与 C 系列 XRD 分析结果可以看出,尽管两个系列样品中的主晶相均为堇青石,玻璃相含量几乎为零 ( XRD 基线为一水平线) ,但在次晶相方面有所区别。A 系列中出现钙长石与原始粉煤灰中 CaO 含量较高 ( 4. 22%) 有关,虽然由于滑石粉的添加减少了配料中 CaO 的相对百分含量,即从 4. 22%降至 2. 84%,但与经 20%盐酸处理粉煤灰相比依然较高。盐酸处理后粉煤灰 CaO 含量为 0. 95%,经添加滑石粉进行配料后使其相对含量降至 0. 76%,所以在 C 系列烧结样品中,未发见钙长石存在。C 系列中出现的次晶相莫来石,在 A 系列中未发现。
图 6. 15 1370℃ ×3 h 烧结条件下获得的 A4 样品的 XRD 图谱
图 6. 16 C 系列堇青石样品在不同烧结温度下的 XRD 图谱C—堇青石M—莫来石S—尖晶石
图 6. 17 1350℃ ×3 h 烧结条件下获得的 C2 样品的 XRD 图谱
对比 A、C 系列样品还可以发现,尖晶石 ( MgO·Al2O3) 在 C 系列中的衍射峰强度明显低于 A 系列,说明配料纯度对合成堇青石样品纯度有重要影响。
CaO 的存在对烧结合成堇青石原料的物相组成是至关重要的。尽管 Sundar 等 ( 1993)的研究指出,钙离子替代镁离子可使堇青石中的氧化钙含量达到 4. 73%,即在 Mg2 - xCaxAl4Si5O18系统中 x 可达 0. 5。Sundar 采用的方法是溶胶-凝胶法合成堇青石,获得了 x 达0. 5 的单晶相堇青石,并且证实钙离子的替代可以大大降低堇青石热膨胀的各向异性,这一结果与合成堇青石的方法有关,因为溶胶-凝胶法合成堇青石其原料纯度更高,颗粒更加细小均匀。Chen ( 2008) 在烧结堇青石玻璃陶瓷时,用 3% CaO 替代 MgO 仅出现堇青石相5%替代时出现主晶相堇青石和次晶相钙长石,此时制备的堇青石陶瓷密度最佳10% 替代则堇青石的 XRD 强度明显降低,取而代之的是钙长石的 XRD 强度明显增加。
钙长石 ( Anorthite) 是斜长石中的一个端元组分,属三斜晶系,可细分为高温体心钙长石 ( Ⅰ—钙长石,An 组分 70% ~ 90%) 和低温原始钙长石 ( P—钙长石,An 组分90% ~ 100% ) ,二者间转变温度为 200 ~ 300℃ 。根据 Ab—An 系列的成分-温度图 ( 图6. 18) 可以判定,烧结堇青石中的钙长石应属于体心钙长石,它是在配料烧结过程中二次形成的矿物。图 6. 18 中 Pe、ВФ 和 Hu 分别表示晕长石连生区、沃基尔德连生区和胡特恩罗契尔连生区。
图 6. 18 Ab—An 系列的成分-温度图( 据王濮等,1984)
图 6. 19 给出了钠长石 ( Ab) —钙长石 ( An) 在 1100 ~ 1600℃ 温度下的另一相图,显示了 Ab—An 系列斜长石不同百分比组合在不同温度下的相态。配料中 Na2O 的含量只有 0. 07%,而 CaO 含量为 2. 84%,1350 ~1370℃烧结后 XRD 分析几乎全部为结晶相,与Ab—An 系高温相图中指示的全固相区域相一致。
在 CaO-SiO2-Al2O3相图中 ( 图 6. 20) ,钙长石基本上处于三元组分图的中心区域,随着 CaO 含量的增加,可能会出现钙黄长石。尽管 Sundar 等 ( 1993) 的研究指出,钙离子替代镁离子可使堇青石中的氧化钙含量达到 4. 73%,这也许是钙离子替代镁离子的极限值,需要相应的转化条件。本次实验配料中 CaO 含量为 2. 84%,而烧结试样中已经有钙长石形成,说明钙离子替代镁离子的数量有限。
莫来石是斜方晶系,晶体呈平行 c 轴延伸的针状或横断面为四边形的柱状。高铝粉煤灰中莫来石的原始含量高达 35. 6%,但在 A 系列烧结样品中未发现有莫来石晶相,说明MgO 的加入破坏了配料中已经存在的莫来石。
图 6. 19 Ab—An 系高温相图
图 6. 20 CaO-SiO2-Al2O3相图( 转引自 Mollah 等,1999)
根据林彬萌等 ( 1989) 的研究成果,含有 1. 5%MgO 的试样,在 1500℃下加热 2 ~10 h不影响莫来石的结构,当 MgO 增加到 2%,并延长保温时间时,会使莫来石的数量减少加入 18. 6%MgO 时,莫来石完全分解CaO 的存在也是莫来石数量减少的一个因素,试样中加入 1. 12%的 CaO 能使莫来石分解 10%,当加入 11. 5% CaO 时,莫来石完全分解。由此可见,高温下这两种因素均促进了配料中莫来石相的分解,进而在 MgO 存在的作用下,使配料中的化学成分逐步转化为堇青石结晶相。
C 系列中有少量的莫来石相出现,可能有两种来源: 一是配料中原始粉煤灰中莫来石相的残余物二是堇青石形成过程中伴生的莫来石。要详细区分这两种莫来石的来源,需要测定莫来石的晶格常数,即 a、b 和 c 的值。莫来石的晶格常数随莫来石中 Al2O3含量的不同而变化,也就是说,莫来石晶格常数随 Al2O3的增加,a 值呈线性增加,c值略有增加,而 b 值有下降趋势 ( 图6. 21) 。
图 6. 21 莫来石晶格常数随 Al2O3含量的变化( 据 Fischer 等,2005)
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
Gomse 等 ( 2000) 对法国东部一家火电厂粉煤灰采用 XRD 和 NMR ( 核磁共振) 等多种研究手段得到粉煤灰中莫来石的化学式为 Al4. 70Si1. 30O9. 65( 对应 x = 0. 35,Al2O3含量为75. 5% ) ,其中 Al2O3含量略高出经典的莫来石化学式 Al4. 5Si1. 5O9. 75( 对应 x = 0. 25,Al2O3含量为71. 8%) ,介于烧结3∶2 莫来石和电熔2∶1 莫来石之间。粉煤灰形成过程中的瞬时冷却使得莫来石并不能充分结晶和均一化,导致了莫来石在结构和成分上的差异。若测定了莫来石中的 Al2O3含量和晶格常数,就可以区分合成堇青石样品中的莫来石来源。本次实验中 C 系列样品中的莫来石含量甚微,未能对其做进一步的研究。
尖晶石 ( MgO·Al2O3) 也是合成堇青石实验过程中的伴生相,总体含量甚微,且 C系列中含量略低于 A 系列。尖晶石属等轴晶系,常呈八面体晶形,有时与菱形十二面体和立方体成聚形,常依 ( 111) 为双晶面和接合面构成双晶,这种双晶律称为尖晶石律。尖晶石有多种存在形式,常见的有镁尖晶石、铁尖晶石和锌尖晶石,这是因为尖晶石的类质同像非常普遍,二价阳离子 Mg2 +经常有 Fe2 +和 Zn2 +等的类质同像替代。通常所谓的尖晶石 ( Spinel) 即指镁尖晶石 ( MgAl2O4) ,理论上的化学组成为 28. 2% MgO 和 71. 8% Al2O3。
MgO 和 Al2O3间的固相反应,在相当低的温度便可进行,Hlavac ( 1961) 在 950 ~1300℃ 间研究 Al2O3+ MgO 的反应动力学,解释 γ - Al2O3具有较大的化学活性 ( 活化能:α - Al2O3为 107 kJ/molγ - Al2O3为 342. 76 kJ/mol) 促进合成反应。引证 Wagner 给出的该反应阳离子互扩散过程如图 6. 22 所示。该反应模型可用实验证实,但不能对实际反应速率常数做出完整计算。
粉煤灰中 8. 4%的刚玉相在烧结堇青石样品中也未发现,说明 MgO 的加入使得刚玉( α - Al2O3) 消失,继而经过镁、铝离子间的扩散形成尖晶石,有硅同时参与下也可形成堇青石。
据研究 ( 倪文等,1995,1996,1997) ,高温型 α - 堇青石结构中存在两类不同的四面体,即位于六圆环内的四面体和起连接作用的四面体。Meger 等 ( 1977) 认为,起连接作用的四面体明显大于六圆环内的四面体,因此较大的铝原子将有较大的几率进入这些较大的四面体中 ( 图 6. 23 ( a) ) 。
图 6. 22 MgO-Al2O3系离子扩散和相界反应 Wagner 模型
图 6. 23 典型 α - 堇青石 ( a) 与典型 β - 堇青石 ( b) 的结构比较( 据倪文等,1995)
对于低温变体 β - 堇青石来说,Gibbs ( 1966) 认为在六圆环中有 2 个体积较大的四面体易于被铝所充填。因此,在理想的堇青石结构中,六圆环中含有 2 个 Al-O 四面体,而起连接作用的四面体中有 1/3 被硅所占据。在整个三维空间骨架中,除了六圆环中的两对富硅四面体共用一个氧原子外,其他富铝四面体与富硅四面体严格有序地相间排列( 图 6. 23 ( b) ) 。
μ-堇青石是堇青石玻璃体在较低温度下 ( <1150℃) 发生去玻化作用时转变成 α - 堇青石或 β - 堇青石的中间产物,其结构为高温石英型结构,并能与高温石英形成连续的固熔体。
堇青石结构的基本单元是由 6 个 ( Si,Al) O4四面体连接而形成的六圆环。这些六圆环沿 c 轴平行排列而形成 c 轴的通道。由于通道内具有较大的空间,一些较小的分子,如 H2O、CO2等和电价补偿离子,如 K+、Na+、Li+、Cs+、Ca2 +、Ba2 +等均可进入通道,而不对堇青石的基本结构产生影响。这些分子或离子统称为通道粒子。虽然大多数通道粒子不影响堇青石的基本结构,但某些较大的粒子会对堇青石晶格的畸变产生影响,从而影响堇青石多型的稳定性。
堇青石有复杂的同质多像存在。在堇青石晶体中,还存在结构的歪曲使其对称度降低,都城秋穗 ( 1957) 认为,堇青石歪曲程度可由 X 射线粉末图的 ( 511) 、 ( 421) 和( 131) 的 3 个峰的分离程度来估 算。它 们 在 未 受 歪 曲 的 六 方 印 度 石中 重 合成 单 峰
日本学者都城秋穗在研究堇青石结晶情况时,提出了歪曲指数 ( Δ) 的概念:
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
他发现堇青石歪曲指数的最高值没有超过 0. 31,他把具有最高歪曲指数的堇青石( 0. 29 ~ 0. 31) 称为过歪曲的堇青石0 <Δ <0. 29 的堇青石称为次歪曲的堇青石Δ = 0的堇青石称为印度石。歪曲指数与堇青石成分无关,而与堇青石的形成温度有关。Δ = 0的堇青石在十分高温情况下是稳定的,Δ = 0. 29 ~ 0. 31 的过歪曲堇青石在中温下是稳定的,次歪曲的堇青石介于二者之间。它又可以分为高次歪曲堇青石和低次歪曲堇青石,前者出现于安山岩中,后者广泛分布于变质岩、伟晶岩和石英脉中。由此可见,堇青石的歪曲指数可用作地质温度计 ( 叶大年等,1984) 。实际上,在人工烧结合成的堇青石中,堇青石的歪曲指数可以用来指示堇青石结晶时的热状态。
堇青石结构上的歪曲可能和硅、铝在 Si5AlO18环中的分布有序和无序有关,所以歪曲指数可以作为堇青石有序—无序的尺度。
在本次合成堇青石实验中,查阅 JCPDS 卡,堇青石 XRD 图谱上的 ( 511) 、 ( 421) 和 ( 131) 的 3个峰的位置在 2θ = 28° ~ 30°之间,对应 d 值分别为3. 047、3. 036 和 3. 018 ( 图 6. 24 ) , 从本 次 试样XRD 图谱上可以看出,3 个峰完全重叠 ( 见图 6. 14至图 6. 17) ,说明试样中的堇青石均为印度石,即高温 α - 堇青石。
图 6. 24 各类堇青石在 2θ =28° ~30°时的衍射线 ( Cu,Kα) 特征( 据叶大年等,1984)
( 5) 合成样品的 SEM 观察
将烧结堇青石试样的新鲜断裂面放入真空镀膜仪中,镀 30s 铂金后置入 SEM 下观察,低倍数下可以发现烧结试样一般具有不等数量的孔隙结构,多数试样的孔隙结构呈不规则状 ( 图 6. 25a) 仅在 A4 试样( 软化坍塌) 中发现数量众多、大小不一的气泡状孔隙 ( 图 6. 25b) 。
高倍数下观察,试样中堇青石晶体发育相当完好,特别是在孔隙空间中,这是因为孔隙的存在为晶体增生提供了良好的发育空间 ( 图 6. 26) 。堇青石晶形一般呈短柱状,长径比多在 1. 5 ~2. 0 之间,横断面为六边形或近似圆形,并可见完好的六方柱状晶体。莫来石的晶体一般呈针状或长柱状,横断面呈四边形,这一特征可与堇青石晶形相区别。钙长石为平行双面晶类,一般沿 ( 010) 呈假六方板状,有时可见聚片双晶。尖晶石基本上均呈八面体晶形,但也能够发现复合尖晶石形成的聚形,易于识别。图 6. 26 为各试样 SEM 下的晶体形态,除特别注明外均为堇青石晶体。
图 6. 25 烧结堇青石试样的显微结构
根据高振昕等 ( 2002) 的研究,在合成莫来石-堇青石样品中还可能存在极其少量的呈六方片状的六铝酸钙 ( CA6) 晶体,它属于六方晶系。CA6通常在 CaO-Al2O3或 CaO-Al2O3-SiO2系中存在,有人认为 CA6是从含有 1% ~2% CaO 的铝土矿熔融刚玉磨料中结晶而来。高振昕 ( 1982) 在煅烧铝土矿的钙质熔洞中发现了结晶完好的自形 CA6,并做了化学分析、显微镜观察、XRD 和 SEM 观察,指出铝土矿高温煅烧时,其中所含的方解石同水铝石 ( 刚玉) 反应生成 CA6,认为其析晶环境多为液相。
本次实验尽管在 XRD 上未见其衍射峰,但在个别样品中的确发现有极其少量结晶完好的六方薄片晶体,由于含量极少,而且其晶形与钠长石的六方片状晶体相似,所以不易详细区分。实际上,若要加以区分的话,可以利用晶体形貌和化学成分加以判断,附以 EDX 分析结果即可。利用 SEM-EDX 分析可以确定试样中的微量矿物,以弥补 XRD 分析的不足。
样品中少量存在的浑圆粒状和不规则粒状体一般属于 RO 相,这是由于配料中所含杂质氧化物成分造成的。
B 系列试样在 SEM 下观察,其结构相对松散,多见不规则气孔。堇青石结晶相依然存在,晶体发育程度不如 C 系列,可以见到晶体粗大的莫来石存在 ( 图 6. 27) 另外,在B 系列中也发现有尖晶石相存在。因晶相发育不如 A 和 C 系列样品,所以没有对其进行XRD 研究,仅进行了 SEM 观察,但从试样物理性能和抗压强度指标看,物相组成与 A 和C 系列差异不大。
从不同配料固相反应烧结合成堇青石的 SEM 分析结果可见,晶体大小似乎没有特别大的差异,以 5 ~10 μm 居多。1350℃和 1370℃下同一配料烧结,物相组成基本一致,晶体大小所差无几恒温时间差异对堇青石结晶也没有太大影响。物相组成主要取决于原料配比,不同配比其物相组成有所差异。B 系列与 C 系列样品相比,均采用酸洗后的粉煤灰为原料,所以 C 系列中存在的晶体在 B 系列中同样可以见到,但发育程度稍有逊色B系列中莫来石晶体个体较大,可能与配料中 Al2O3含量较高、MgO 含量较低有关。将 A与 C 系列相比,C 系列中晶体发育较好,不仅在孔隙空间见到为数众多的堇青石晶体,而且在其断裂面的任何地方均可见及,其中以 C 系列中 C1 试样最为明显。
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
图 6. 26 SEM 下的试样形态
图 6. 27 B 系列部分烧结试样的 SEM 图像
堇青石合成是否完全,取决于原料的比表面和烧成温度合成纯度主要取决于配料的物质组成,工艺上有较大难度。由于原料中杂质氧化物种类和数量差异,使得合成温度不同。合成原料的粒度同样影响着合成温度。另外,为降低烧结温度,或提高制品某些性能,许多研究者采用不同添加剂进行实验,得出了不同结论。如 Torres 等 ( 2005) 在进行堇青石玻璃陶瓷实验时,采用 55% SiO2,21. 5% Al2O3, ( 16. 5-x) % MgO,x% CaO,3. 8% TiO2和 2. 9% B2O3为原料,分别取 x =6. 5,4. 6 和 2. 9 进行实验,得出当 x = 4. 6时,能够在1160 ~1190℃下获得单一晶相的 α - 堇青石陶瓷,且显微硬度达到最大,晶体最为完好。
Chen ( 2008) 指出,在 MgO-Al2O3-SiO2系中,CaO 取代 MgO 在 3% 以下,900℃烧成时,主晶相为 α - 堇青石,次晶相为 μ - 堇青石10% 替代时,主晶相为钙长石,次晶相为 α - 堇青石5% 替代时,主晶相为 α - 堇青石,次晶相为钙长石,此时试样密度接近堇青石理论值的 98% ,且具有低的介电常数、低的热膨胀性和较高的抗折强度( ≥134 MPa) 。
代刚斌等 ( 2003) 研究发现,当配料中的 Al2O3含量在理论组成的 5%范围内变化时,对合成堇青石材料的显微结构和高温性能产生明显影响。其中 Al2O3与 SiO2或 Al2O3与MgO 质量比的增大有利于改善堇青石材料的显微结构和提高其高温性能。在富铝配料组成下合成的堇青石材料中,玻璃相的含量相对较低,有针状莫来石在玻璃相中析出,由针状莫来石晶体连接成的颗粒均匀地分布在堇青石相中,这种显微结构对提高材料的高温性能很有帮助。
实验过程中,如果减少滑石粉比例,可以生成莫来石和堇青石的共生组合结构,以此共生结构作结合基质添加烧结莫来石颗粒或合成堇青石颗粒,可以生产出不同相组合的制品,以适应不同温度条件的变化。工业上已有生产莫来石-堇青石系制品的实例,采用的方法有利用原位反应原理一次烧成,也有二次烧成。在 Acme 公司生产的制品基质中,就能发现莫来石与堇青石共生的形态,前者为较粗的柱状,后者为纤细的针状或纤维状,两者共生,密不可分。这种结构特征是颗粒与基质紧密结合的表征,也是确保制品具有一系列优越性的根本因素。Camerucci 等 ( 2001) 将30%莫来石与70%堇青石原料配料,制备出与硅热膨胀系数相媲美的复合材料,并证实这一莫来石含量对材料的电学特性几乎没有影响。此类实验的研究目的,是希望将莫来石 ( 高熔点) 和堇青石 ( 低热膨胀性、低介电常数) 两者的优点相结合,以制备高性能的复合材料。
彭同江 孙红娟 陈吉明 马国华
(西南科技大学矿物材料及应用研究所,四川绵阳 621010)
摘要 对纤蛇纹石石棉的化学成分、晶体结构、形态特征和活性进行了研究,研究了纤蛇纹石石棉制备纤维状纳米SiO2的原理,并对试验产物进行了分析。结果表明:纤蛇纹石石棉是天然产出的纳米管状材料,其内管直径在3.5~24nm之间,多数小于11nm,外管直径在16~56nm之间,绝大多数在20~50nm范围内。纯净的纤蛇纹石石棉样品的化学成分主要为SiO2、MgO和H2O+,其质量分数SiO2为42%左右、MgO为42%左右、结构水H2O+为约13%。纤蛇纹石具有卷管状结构,化学键特点决定了其具有很好的化学活性和可改造性,为制备纤维状纳米SiO2粉体材料创造了基础。纤蛇纹石石棉纤维经酸处理后,MgO等组分被浸取出来转变为硫酸盐,而残留下非晶质纳米SiO2纤维残骸;经后处理即可获得纤维状SiO2纳米材料。
关键词 短纤维石棉;特征研究;制备纤维状SiO2。
第一作者简介:彭同江(1958—),男,博士,教授,研究方向:矿物晶体化学。E-mail:tjpeng@swust.edu.cn。
一、短纤维石棉的化学分散实验及结果分析
采用十二烷基苯磺酸钠(SDBS)对纤蛇纹石纤维进行了化学分散的试验和机理研究。结果表明,纤蛇纹石纤维进入水中表面带有正电荷,阴离子表面活性剂十二烷基苯磺酸钠对其具有很好的松解分散作用;分散后的纤维样品纤维直径大部分在50nm左右,Zeta电位恒为负值,且随pH值的增加,Zeta电位负值越来越大。
(一)短纤维石棉的化学分散实验
1.分散实验
取一定量水洗提纯后的纤蛇纹石纤维样品,加入一定量的十二烷基苯磺酸钠,再加水至容积500 mL,搅拌均匀后浸泡24 h,然后利用乳化机在一定转速下进行分散试验。
2.干燥方法
由于SDBS的作用,尽管纤维的浓度低(试验中取1%~2%),但纤蛇纹石纤维高度分散在水中,并形成胶体状的纤维浆。由于纤蛇纹石纤维的直径非常细,传统的过滤难于进行固液分离。当使用一层滤纸进行抽滤时,纤维浆的固液分离率较低,滤液中尚有少量的纤维;当使用两层或两层以上滤纸时,固液分离率有所提高,但抽滤速度太慢,平均每分钟抽出滤液约为1~3 mL。因此,试验中自行设计了两种使纤维浆体浓缩的方法,即直接干燥法和热水凝聚法。
(1)热水凝聚法
将蒸馏水适量装入烧杯中,加热至沸腾状态,然后边搅拌边缓慢倒入一定量的纤维浆体。由于水对纤维浆体的稀释作用,导致浆液中SDBS溶液的浓度下降,加上热的作用,使吸附在纤维表面上的SDBS分子产生解吸作用,导致第二层吸附分子层的破坏,从而使得原来分散的纤维发生凝聚而沉降下来。待浆液冷却下来后,使用抽气机进行抽滤,能加快实现固液分离。过滤获得的滤饼经洗涤后进行干燥,然后利用高速搅拌器进行分散处理,便可获得灰白色蓬松状的纤维样品。
(2)直接干燥法
将纤维浆体装入烧杯中,通过加热使纤维浆液中的水分完全蒸发,则在容器底部获得了纤维与SDBS的混合物。将其取出后,直接使用高速搅拌器在干法状态下进行分散处理,得到灰白色蓬松状的纤维样品。
与热水凝聚法不同的是,虽然同样是对纤维浆体进行加热,但直接干燥法不会对纤维浆体产生稀释的作用,不但不会使SDBS的浓度下降,反而提高。因此直接干燥法所获得的纤维间残留了较多的SDBS。而热水凝聚法可洗去大部分SDBS,所得到的固体产物中含有较少的SDBS。纤维样品中存在的SDBS可以通过煅烧除去。
(二)结果及讨论
1.影响纤维分散程度的因素
(1)分散剂用量
分散剂的使用量不同,纤维样品的分散程度不同,分析结果如图1所示。
由图1可以看出,随分散剂用量的增加,液体的透光率是逐步下降的,而过滤时间是逐渐上升的,即纤维的分散程度与分散剂的用量呈正相关关系。当分散剂的量由2.5%增加到15%时,体系的透光率下降很快;而再增加分散剂的量到17.5%时,透光率下降很少。当分散剂的量达到15%的时候,过滤时间出现了一个最大值;再增加分散剂的量时,过滤时间却有一定程度的下降。这说明适量的分散剂有利于纤维的分散,但分散剂过多,对纤维的分散不利。实验结果表明,SDBS的用量为15%时,纤维的分散效果最佳。
图1 分散剂用量对纤维分散程度的影响
(2)分散时间
分散时间不同,纤维样品的分散程度不同,分析结果如图2所示。
图2 分散时间对纤维分散程度的影响
图2表明,随着分散时间的增加,透光率逐渐减小,而过滤时间逐渐增加。这说明分散时间与纤维分散程度呈正相关关系。当分散时间小于60 min 时,分散程度随着时间的增加而较快地提高,线性关系也较好。当分散时间超过60 min以后,分散程度随时间的增加,变化程度较小。
(3)搅拌速度
分散时所采用乳化机的转速不同,纤维样品的分散程度不同,分析结果如图3所示。
图3 搅拌速度对纤维分散程度的影响
乳化机的高速剪切作用对纤蛇纹石纤维的分散具有很大的促进作用。图3表明,随乳化机转子转速增加,样品纤维的分散程度提高。这是因为乳化机转速越快,转子旋转所产生的离心力就越大,相应的被甩出的纤维的线速度就越大,纤维之间受到的剪切力、摩擦力和碰撞力就越大,进而使纤维更容易被开松分散。
SDBS对纤维的分散作用主要体现在其使用量对纤维分散程度的影响上;而分散时间和搅拌速度对纤维分散程度的影响,则通过SDBS(化学松解作用)和乳化机(物理松解作用)的协同作用而体现出来。
2.扫描电子显微镜分析(SEM)
SEM分析可以很清楚地表征纤维的分散状况。使用的是英国Leica Cambridge LTD公司生产的S440 型扫描电子显微镜。纤维原样和分散后所得到样品的SEM照片如图4、图5。
图4 纤维原样SC-Y的SEM照片
图5 分散样品的SEM照片
(a)热水凝聚法干燥的样品CA-FS-1;(b)直接干燥法干燥的样品CA-FS-2
由图4可以看出,未被分散处理的原始纤维样品在选矿加工过程中已有大量纤维被机械分散,但尚有大量纤维束存在,纤维束中纤维几乎相互平行地粘接在一起。
经过热水凝聚法(图5a)和直接干燥法(图5b)所得到的分散后的纤维,仅有少量的纤维束存在,绝大多数呈单根纤维存在,纤蛇纹石纤维得到了较充分地分散,所得到的单根纤维的直径绝大部分在50nm左右。热水凝聚法干燥的纤维样品,其纤维间和纤维表面几乎没有SDBS的胶结物存在。而直接干燥法干燥的纤维样品,其纤维间和纤维表面尚存有SDBS的胶结物。
3.Zeta电位分析
采用英国Malvern公司所产的Zetasizer 3000 Hs型Zeta电位分析仪对样品的Zeta 电位及pH 值进行了分析,结果如图6。
图6 样品Zeta 电位及随pH 值的变化
1—提纯纤维;2—热水凝聚法样品;3—直接干燥法样品
从图6 可以看出,分散前的提纯纤维的Zeta电位在很大的pH 值范围内为正。随pH值的增大,纤维表面的Zeta电位逐渐降低,并由正变负,其零电点的pH值为10.8左右。在测定范围内,纤维的最高Zeta电位值为46.3 mV,最低值为-16.7 mV。
使用SDBS分散后的纤维,其表面电性有了根本性的变化。带正电荷的原纤维表面吸附了阴离子表面活性剂后使其表面带有负电性,且Zeta电位值随pH值的增大而减小。在测定的范围内,对于热水凝聚法获得的样品Zeta电位在-2.7~-37.6 mV之间,对于直接干燥法获得的样品Zeta电位在-10.1~-44.8 mV之间。与热水凝聚法样品相比,直接干燥法样品中含有更多的SDBS,因此,其Zeta电位更低。可见,当SDBS的浓度增加时,纤蛇纹石纤维表面Zeta电位的负值也增加,进而可增加纤维之间的松解分散作用。
二、纤维状SiO2的制备原理与技术
研究了纤蛇纹石石棉制备纤维状纳米SiO2的原理,并对试验产物进行了分析。纤蛇纹石具有卷管状结构,化学键特点决定了其具有很好的化学活性和可改造性,为制备纤维状纳米SiO2粉体材料奠定了基础。纤蛇纹石石棉纤维经酸处理后,MgO等组分被浸取出来转变为硫酸盐,而残留下非晶质纳米SiO2纤维残骸;经后处理即可获得纤维状SiO2纳米材料。
(一)基本原理
纤蛇纹石石棉制备纤维状纳米SiO2粉体的原理主要依据如下4个方面:①卷管状纤蛇纹石石棉原纤维;②石棉原纤维中高含量的SiO2组分;③石棉原纤维中MgO等组分的酸可溶性及与SiO2组分的惰性;④非晶质SiO2纤维残骸的稳定性。
其中①、② 是制备纤维状纳米SiO2粉体的物质和结构基础;③、④是制备纤维状纳米SiO2粉体的工艺技术原理基础。其中③的工艺原理可由如下化学反应方程式表示:
中国非金属矿业
由反应式(1)获得的非晶质SiO2纤维残骸经加热与后处理可获得纤维状SiO2纳米粉体材料。
中国非金属矿业
(二)实验及结果分析
根据上述制备纤维状SiO2纳米粉体的基本原理,可将制备纤维状纳米SiO2的实验步骤分为5个环节:
1)石棉原纤维的物理分散与化学分散。采用机械搅拌和添加活性剂的方法,使石棉纤维分散成为胶体,目的是将石棉纤维束分散成趋向于单一纤维的石棉凝胶。
2)酸浸取反应与固液分离。采用硫酸处理石棉纤维,目的是将石棉中Mg、Fe等其他非SiO2组分通过与硫酸反应形成硫酸盐,达到与非晶质SiO2纤维分离,并洗涤除去硫酸盐组分。
3)非晶质SiO2纤维的均一化处理与分散。通过添加表面修饰剂的方法,使非晶质SiO2纤维的表面得到修饰,并趋向均一化。
4)表面包覆与干燥。采用偶联剂对非晶质SiO2纤维进行包覆处理,并干燥形成分散性良好的粉体。
5)加热处理。加热非晶质SiO2纤维使其脱去胶体水转化为纤维状SiO2纳米粉体。
对经物理与化学分散后的石棉原纤维进行扫描电镜分析,对非晶质SiO2纤维样品进行X射线衍射分析。
结果表明,①石棉纤维分散较均匀,纤维直径在20~30nm。尚有未完全分散的纤维束,直径小于100nm,纤维弯曲有韧性。②经酸和加热处理后所获得的产物为非晶质结构,与气相法等方法制备的纳米SiO2的结构相似。③纤维状SiO2成棒状、针状,纤维的细度一般在30~60nm,长度在800~1600nm,甚至更长。纤维状粉体呈松散状态时,纤维之间相互交织在一起。
三、结论
1)纤蛇纹石石棉是天然产出的纳米管状材料,其内管直径在3.5~24nm之间,多数小于11nm。外管直径在16~56nm之间,绝大多数在20~50nm之间。
2)纯净的纤蛇纹石石棉样品的化学成分主要为SiO2、MgO 和H2O+;其中,SiO2为42%左右,MgO也为42%左右,结构水H2O+为13%左右,Fe2O3、FeO和Al2O3等含量在2%~4%之间。
3)纤蛇纹石具有卷管状结构,化学键特点决定了其具有很好的化学和可改造性,加上化学成分和形态特点,这为制备纤维状SiO2纳米粉体材料奠定了基础。
4)纤蛇纹石石棉纤维经酸处理后,MgO、Fe2O3、Al2O3等组分被浸取出来转变为硫酸盐,而残留下非晶质纳米SiO2纤维残骸。非晶质纳米SiO2纤维残骸经后处理后可获得纤维状SiO2纳米粉体材料。
An Experiment on Chemical Dispersion of Short Asbestos Fiber and Preparation of Fibrous SiO2
Peng Tongjiang,Sun Hongjuan,Chen Jiming,Ma Guohua
(The Research Institute of Mineral Materials and Their Application,Southwest University of Sciences and Technology,Mianyang Sichuan 621010,China)
Abstract:The article described a research on chemical composition,crystal structure,morphological characteristics and activity of chrysotile asbestos.The principle of preparation of fibrous nano SiO2from chrysotile as bestos was studied,and an analysis of experimental products was undergone.The results shown,that the chrys otile asbestos was a naturally occurred nano tubular material with an inner diameter of between 3.5—24nm,mostly shorter 11nm and an exterior diameter of between 16—56nm,predominately in the range of 20—50nm.The main chemical compositional parts of pure chrysotile asbestos sample were SiO2,MgO and H2O with weight percentages as SiO242%,MgO 42% and structural water H2O 13%.The chrysotile asbestos has a curly tubular structure.The feature of its chemical bond determines that it has an excellent chemical activity and modi fiability,which lays a foundation for preparation of fibrous nano SiO2after acid treatment of chrsotile asbestos fi ber,its components like MgO and so on were extracted and transformed into sulfates,and noncrystalline nano fibrous SiO2remains which could be changed to fibrous SiO2nanomaterial through post-treatment.
Key words:short asbestos fiber,characteristies study,preparation of fibrous SiO2.
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)