因子载荷估计值小于0.4但是显著可以保留吗

因子载荷估计值小于0.4但是显著可以保留吗,第1张

连接指标之间的系数称为因子荷载,这是一个因素分析中的术语。

不同于EFA,在CFA中许多因子荷载是设定为0的。这意味着项目不受这个因子的影响,或者对此无荷载。在标准的CFA模型中,每一个项目只对一个因子有荷载,且测量误差是不相关的。如果一个CFA模型中项目具有交叉的因子荷载那么就是非标准CFA模型。具有交叉荷载的项目是测量工具(量表)不希望看到的东西,这意味着一个复杂的因子结构,而这个结构很难被验证。

一个项目对因子的荷载是视情况而定的而不是固定的。如果在一个模型中增加额外的项目,那么某个项目对于一个因子的荷载可能产生轻微的变化。一般而言,在研究中会报告完全标准化的因子荷载(观察指标和因子均标准化)。一般来讲,0.3可以作为因子荷载大小的临界点,一些研究认为0.32是一个充分的因子荷载临界点,因为这说明这项目拥有最少10%的方差由这个因子解释,0.32^2=0.1。更保守来讲,0.4比较好。但是更重要的是因子荷载必须统计显著,才能被考虑为一个可接受的指标。

一般而言因子载荷是小于1的,但是也有可能超过1。我在使用SEM的过程中也出现过因子荷载大于1的情况,但并这不一定说明搞错了,只有在分析了相关矩阵且因子标准化且不相关(正交)时,因子载荷才是相关。当因子相关(倾斜)时,因子载荷是回归系数,而不是相关性,因此它们可能大于1.0。然而,大于1.0的标准化因子负荷可能表明数据中存在高度的多重共线性。

结构方程模型(Structural Equation Mode血g, SEM) 可用于多种实用的场景,如多因变量分析、潜变量分析、中介变量分析等。它可以看作路径分析( Path Analysis)和验证性因子分析(Confrrmatory Factor Analysis) 的组合。

(1)潜变量和显变量

在传统的广义线性模型中,各自变量或因变量都是通过“直接”测量或调查而获得的,但有些变量却是难以直接测得的,如学习能力、幸福指数、抑郁状态等。这种无法直接测得的变量称为潜变量(Latent Variables), 与此对应,可以直接测得的变量称为显变量(Observed Variables)。

(2)潜变量虽然无法直接获得,但却是存在的,而且在背后支配着显变量。例如,一名学生的考试成绩是可以直接观测的显变量,它可能是由学习能力这一潜变量决定的;再如,一个人的抑郁状态是潜变量,可能决定着他的“能否很快入睡""感到沮丧”等可直接回答的问题。

(1)潜变量与显变量之间是有一定关系的,如"焦虑”这一潜变量是如何支配“我睡不着觉”和"我心里觉得烦乱”这两个显变量的?

(2)在验证性因子分析中,通过以下模型将潜变量和显变量联系起来:

其中, X1,X2, …是显变量, F1,F2,··,Fm 是潜变量。各潜变量通过系数a11 、a21 等支配显变

量X1 、X2 等,而ε等则是无法解释的误差。

(3)如潜变量“焦虑"与显变量“我睡不着觉”和"我心里觉得烦乱”之间的关系可以表达为

(1)上述公式与线性模型的公式很相似。其实a1、a2等作为系数,其含义也与线性模型中差不多,如a1表示焦虑每增加1个单位,“我睡不着觉”的预期改变量; a2表示焦虑每增加1个单位,“我心里觉得烦乱"的预期改变量。

(2)不过与线性模型不同的是,在验证性因子分析中,该系数不叫回归系数,而被称为因子载荷(Factor Loading), 它反映了潜变量与显变量之间的关系。因子载荷越大,表明潜变量与显变量的关系越密切。

(3)在验证性因子分析中, 一个很关键的问题是确定潜变量,这一点是由专业知识来决定的。

例如:

路径分析可以探索(显)变量之间的直接和间接关系,验证性因子分析可以分析潜变量与显变量之间的(直接)关系,结构方程模型则将二者结合,可以同时分析带有潜变量的直接和间接关系。

下表是调查了100人的5个变量的协方差结构,目的是了解家庭状况对学生抑郁是否会有影响。

(1)假定家庭状况(潜变摄)用父母学历评分和家庭氛围评分(显变量)来体现,学生抑郁(潜变量)用学生情绪评分、学生认知评分和学生动机评分(显变量)来体现。并且假定路径为:家庭状况会影响学生的抑郁状态。

(2)最终我们得到的结构方程模型如下图所示。图中, f1表示潜变量家庭状况,f2表示潜变量学生抑郁。

验证性因子分析,是用于测量因子与测量项(量表题项)之间的对应关系是否与研究者预测保持一致的一种研究方法。尽管因子分析适合任何学科使用,但以社会科学居多。

目前有很多软件都可以非常便利地实现验证性因子分析,本文将基于SPSSAU系统进行说明。

 

因子分析可分为两种类型:探索性因子分析(EFA)和验证性因子分析(CFA)。

探索性因子分析,主要用于浓缩测量项,将所有题项浓缩提取成几个概括性因子,达到减少分析次数,减少重复信息的目的。

验证性因子分析与探索性因子分析相似,两者区别只在于探索性因子分析(EFA)用于探索因子与测量项之间的对应关系,验证性因子分析(CFA)用于验证结果与理论预期是否一致。

 

在实际研究中,验证性因子分析常会与结构方程模型、路径分析等方法联系到一起,对于不熟悉概念的研究人员容易搞混这些方法,下表对这几种方法进行简单说明:

探索性因子分析: 验证因子与分析项的对应关系,检验量表效度,非经典量表通常用探索性因子分析。

验证性因子分析: 验证因子与分析项的对应关系,检验量表效度,成熟量表通常用验证性因子分析。确认测量关系后,后续可进行路径分析/线性回归分析研究具体的影响关系。

路径分析: 用于研究多个自变量与多个因变量影响关系;如果因变量只有一个,可以使用线性回归分析。

结构方程模型SEM : 包括测量关系和影响关系。如果仅包括影响关系,此时称作路径分析(Path analysis,有时也称通径分析)。通常需要进行探索性因子分析和验证性因子分析,均保证测量关系无误之后,再进行结构方程模型构建。

从分析思路上看,建议先用探索性因子分析EFA构建模型,确定存在几个因子及各分析项与因子的对应关系,再用验证性因子分析CFA加以检验。

(1)模型设定

首先需要确定因子数及对应分析题项,顺序放入分析框内。

(2)模型拟合

通过因子载荷系数表格可以展示因子(潜变量)与分析项(显变量)之间的关系情况。如果因子与测量项间的对应关系出现严重偏差,或者因子载荷系数值过低,则需要删除掉该测量项。

分析时主要关注P值及标准载荷系数,建议结合SPSSAU给出的“分析建议”进行分析。

模型拟合指标用于整体模型拟合效度情况分析。

常用的拟合值及其判断标准,都展示在上表中,实际输出值在标准范围内及说明模型拟合程度较好。模型拟合指标非常多,通常下很难保证所有指标均达标,只要多数指标达标或接近标准值即可。

*常用指标包括卡方自由度比,GFI,RMSEA,RMR,CFI,NFI和NNFI。

(3)模型修正

根据模型拟合指标情况,评价模型的优劣,如果模型拟合情况不佳,则需要进一步修正模型。

MI指标越大说明该项与其他因子的相关性越强,MI过大时会干扰模型需要进行修正或剔除该项。

模型构建过程需要重复多次,以找到最优模型。同时SPSSAU会自动生成模型结果图。

(4)模型分析

在完成模型构建后,即可使用模型进行分析。验证性因子分析主要有三个方面的功能,分别是聚合效度、区分效度、共同方法偏差。

聚合效度

聚合效度,也叫做收敛效度。AVE和CR是用于判断聚合效度的常用指标,AVE>0.5,并且CR>0.7,则说明具有良好的聚合效度。如果AVE或CR值较低,可考虑移除某因子后重新分析聚合效度。

上图为SPSSAU输出的AVE、CR值指标表格,可以根据此表格进行查看。

区分效度

区分效度,常用的做法是将AVE根号值与‘相关系数值’进行对比,SPSSAU也会输出相应结果。

如果每个因子的AVE根号值均大于“该因子与其它因子的相关系数最大值”,说明具有良好的区分效度。

共同方法偏差

共同方法偏差,SPSSAU提供两种方法检验,一种是探索性因子分析(也称作Harman单因子检验方法),做法是将所有变量进行探索性因子分析,如果只得出一个因子或者第一个因子的解释力(方差解释率)特别大,则判定存在共同方法偏差。

另一种是验证性因子分析,所有变量全部放在一个因子里面进行分析,如果测量出来显示模型的拟合指标无法达标,模型拟合不佳,说明所有的测量项并不应该同属于一个因子,也就说明数据无共同方法偏差问题。

 

验证性因子分析需要较大的样本量,通常建议样本量至少为测量项(量表题)的5倍以上,最好10倍以上,且一般情况下至少需要200个样本。

一个因子对应的测量项最好在5~8个之间,便于后续删除掉不合理测量项。

绝大多数情况下均为一阶验证性因子分析。如果说验证性因子分析时为二阶模型,此时参数处选中‘二阶’即可。

一般来说,使用验证性因子分析需要有一定的理论基础支持,如果拟合指标不能达标,最好按照分析思路:探索性因子分析→验证性因子分析,进行分析。

以及对于不熟悉的步骤,建议大家阅读SPSSAU帮助手册的相关说明以及SPSSAU的教学视频。

验证性因子分析视频教学: https://www.bilibili.com/video/av69372013


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/168335.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-25
下一篇2023-03-25

发表评论

登录后才能评论

评论列表(0条)

    保存