SEM与TEM的区别

SEM与TEM的区别,第1张

一、性质不同

1、SEM:根据用户使用搜索引擎的方式利用用户检索信息的机会尽可能将营销信息传递给目标用户。

2、TEM:把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。

二、原理不同

1、TEM

(1)吸收像:当电子被发射到高质量和高密度的样品时,主要的相位形成是散射。当样品的质量和厚度较大时,电子的散射角较大,通过的电子较小,图像的亮度较暗。早期透射电子显微镜(TEM)就是基于这一原理。

(2)衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分的不同衍射能力。当出现晶体缺陷时,缺陷部分的衍射能力与整个区域的衍射能力不同,使得衍射波的振幅分布不均匀,反映了晶体缺陷的分布。

2、SEM

(1)用户搜索;

(2)返回结果;

(3)查看结果;

(4)点击内容;

(5)浏览网站;

(6)咨询搜索。

扩展资料:

TEM特点:

1、以电子束为光源,电磁场为透镜。电子束的波长与加速电压(通常为50-120千伏)成反比。

2、它由五部分组成:电子照明系统、电磁透镜成像系统、真空系统、记录系统和电源系统。

3、分辨率为0.2nm,放大倍数可达一百万倍。

4、透射电镜分析技术是一种高分辨率(1nm)高倍率的电子光学分析技术,它以波长很短的电子束为光源,聚焦于电磁透镜成像。

5、用透射电镜分析样品,通常有两个目的:一是获得高倍率的电子图像,二是获得电子衍射图样。

6、透射电镜常用于研究纳米材料的结晶,观察纳米颗粒的形貌和分散度,测量和评价纳米颗粒的粒径。这是表征纳米复合材料微观结构的常用技术之一。

参考资料来源:百度百科-TEM

参考资料来源:百度百科-搜索引擎营销

分类: 理工学科

问题描述:

谁知道离子显微镜是做什么用的?它的原理是什么,说细一些。谢谢

解析:

离子显微镜

E.W.弥勒于1951年发明的一种分辨率极高 (2~3┱)、能直接用于观察金属表面原子的分析装置,简称FIM。

FIM(Field Ion Microscope)是最早达到原子分辨率,也就是最早能看得到原子尺度的显微镜。只是要用FIM看像,样品得先处理成针状,可不是粗针、细针都行喔,针的末端曲率半径约在200~1000埃。(1埃 = 10-10公尺)把样品置于真空极佳的空间中,借由和低温物的接触将其温度降到液态氮的温度以下。在空间中放入成像气体,可能为He、Ne、Ar等气体,视不同样品而定。等以上这些看像的事前工作都准备好,我们才加给样品正高压使附着在样品上的成像气体解离成带正电的阳离子,带正电的气体离子接着被电场加速射出,打到接收器讯号被放大,以电子射到荧光屏幕,我们就能在屏幕上看到一颗一颗的原子亮点。FIM是点投影的显微镜,结构很简单。但与通常的高分辨率电子显微镜不同,它成像时不使用磁或静电透镜,是由所谓成像气体的“场电离”过程来完成的。

FIM的演进

FIM是1956年Erwin W. Mueller发明。由FEM(Field Emission Microscope)发展来的。FEM的样品同样也得作成针状,在真空的环境中成像,不过样品上我们加的是负的高压,样品达到足够的负高压时,会放出电子打到荧光幕产生亮点,而这个亮点代表的并非一颗原子,是样品上一片区域,这个区域电子在同样的负高压作用下都会射出电子。因为电子在横向上 (和样品表面平行的方向) 速度分量造成绕射的情况,使得FEM的分辨率只能达到20到25埃(要看到原子分辨率至少要小于1埃)。Erwin W. Mueller做了什么事改善了分辨率呢?他加了成像气体用正高压使其解离成阳离子,并被加速射到屏幕,成像气体比电子重,而且在低温的情况下,其横向速度分量小多了,提高了分辨率,FIM便如此产生了!在此最初的FIM之后,有人对影像明暗对比、真空情况、样品冷却处理等方面渐渐改善,使得其功能愈来愈良好。

其它的原子解析显微镜

到了1970年,又有新的看得到原子的显微镜出现,SEM(Scanning Electron Microscope)只是它只能看到重原子。1983年又有STM(Scanning tunneling Microscope)此种显微镜的样品便不再只限制成针状,可用来看像的样品范围更大了。另外还有TEM,样品要切成一片很薄的膜,技术上比较困难,而且会将样品结构破坏,价钱亦较昂贵。虽说原子解析技术不再被FIM独占,但目前能有与多的研究或实验需要靠FIM才能做,像是单独原子,或单一原子团在特定的表面之原子运动过程。这些可都一定少不了FIM的!

FIM以及APFIM不仅可用于观察固体表面原子的排列,研究各种晶体缺陷(空位、位错以及晶界等),而且利用场蒸发还能观察从表面到体内的原子的三维分布状况。早期的FIM研究,主要着重于金属表面的结构缺陷,合金的晶界,偏析以及有序-无序相变和辐照损伤等。现在已逐步扩展到表面吸附、表面扩散、表面原子相互作用以及由温度或电场诱导的各种表面超结构的研究(由于APFIM的出现,近年来各种FIM研究都已进入定量化阶段。

氧化铝晶体制备方法:

1、溶胶-乳液-凝胶法

溶胶-乳液-凝胶法是在溶胶凝胶法的基础上发展起来的。其主要工艺过程是利用醇铝水解,经过溶胶凝胶过程制备球形氧化铝粉体,整个水解体系比较复杂,其中溶解醇铝的辛醇占50%,乙腈溶剂占40%,分散水的辛醇和丁醇分别占9%和1%,并且用羟丙基纤维素作分散剂,得到了球形度非常好的球形氧化铝粉体。

溶胶-乳液-凝胶法由于采用了有机溶剂及表面活性剂,缺点是不利于氧化铝粉体的分离及干燥。

溶胶-乳液-凝胶法制备球形氧化铝粉体SEM图片

2、滴球法

滴球法是将氧化铝溶胶滴入到油层(通常使用石蜡、矿物油等),靠表面张力的作用形成球形的溶胶颗粒,随后溶胶颗粒在氨水溶液中凝胶化,最后将凝胶颗粒干燥,煅烧形成球形氧化铝的方法。滴球法制备的球形氧化铝主要应用于吸附剂或催化剂载体。

滴球法是对溶胶-乳液-凝胶法在工艺上的进一步改进,其优点是省去了粉体与油性试剂的分离处理。缺点是制备球形氧化铝的粒径较大,

3、均相沉淀法

均相沉淀法是指在Al2(SO4)3或NH4Al(SO4)2均相溶液中,其沉淀过程包括晶核形成、聚集长大、析出。在沉淀剂的作用下,均相溶液中的浓度降低,就会均匀地生成大量的微小晶核,最终形成的细小沉淀颗粒会均匀地分散在整个溶液当中,制备得到球形氧化铝。

需要特别注意的是:球形氧化铝粉体颗粒只有在Al2(SO4)3或NH4Al(SO4)2溶液中能够获得,而不能在Al(NO3)3或AlCl3溶液中得到,可见SO42-对形成球形颗粒起到了至关重要的作用。

均相沉淀法制备球形氧化铝SEM图

均相沉淀法优点是能够制备球形度非常好的氧化铝粉体,形貌均一,粒度分布窄。缺点是该方法局限性大,形貌形成机理尚不明确。

4、模板法

模板法是以球形原料作为过程中控制形态的试剂,产品通常空心或者是核壳结构。主要工艺过程是以聚苯乙烯微球为模板剂,用碳酸功能化的氧化铝纳米粒子包覆,再通过甲苯洗涤,制备了空心氧化铝球体。

模板法是制备空心球体的好方法。缺点是对模板剂的要求较高,制备过程步骤多,不易操作。

空心球形氧化铝的合成原理示意图

5、气溶胶分解法

气溶胶分解通常是以铝醇盐为原料,利用铝醇盐易水解和高温热解的性质,并采用相变的物理手段,将铝醇盐气化,然后与水蒸汽接触水解雾化,再经高温干燥或直接高温热解,从而实现气-液-固或气-固相的转变,最终形成球形氧化铝粉体。气溶胶分解法关键是由雾化部分和反应部分组成的复杂的实验装置。

气溶胶水解法的工艺流程图

6、喷射法

喷射法制备球形氧化铝的实质是在较短的时间内实现相的转变,利用表面张力的作用使产物球形化,根据相转变的特点又可以分为喷雾热解法、喷雾干燥法和喷射熔融法。

(1)喷雾热解法

喷雾热解法是以Al(SO4)3、Al(NO3)3和AlCl3溶液为原料,通过雾化作用形成球形液滴,经过高温热解生成球形氧化铝粉体。该方法热解过程需要900℃,耗能较大。

(2)喷雾干燥法

喷雾干燥法是先将铝盐溶液与氨水反应制成氧化铝溶胶,再将氧化铝溶胶在150-240℃下喷雾干燥,制备得到球形氧化铝粉体。

该方法相比于喷雾热解法法,优点是:可减少能量的消耗。

喷雾干燥法制备球形氧化铝粉体SEM图

(3)喷射熔融法

喷射熔融法是利用等离子焰直接将固体铝粉或氧化铝粉熔融,然后马上做退火处理,通过调节载气成分和直流电弧的功率可以控制球形化程度,并可以制备空心结构。

等离子喷雾熔融法制备球形氧化铝


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/169478.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-25
下一篇2023-03-25

发表评论

登录后才能评论

评论列表(0条)

    保存