吉林大学徐吉静Nat. Commun.:单原子催化为锂空电池带来新机遇

吉林大学徐吉静Nat. Commun.:单原子催化为锂空电池带来新机遇,第1张

▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授

通讯单位:吉林大学

论文DOI:10.1038/s41467-020-15712-z

针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。

锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。

单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。

▲图一 单原子催化剂的合成过程。

单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。

▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。

▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。

N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。

▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。

受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。

▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。

为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。

▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。

单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。

▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。

N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。

单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。

参考文献

[1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.

徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。

由对称相关面的各向异性生长而产生的生物成因晶体的复杂形态

文章出处: Emanuel M. Avrahami, Lothar Houben, Lior Aram, Assaf Gal. Complex morphologies of biogenic crystals emerge from anisotropic growth of symmetry-related facets. Science 2022 , 376 , 312-316.

摘要: 引导晶体生长到复杂的形态是具有挑战性的,因为晶体往往采用热力学稳定的形态。然而,许多生物形成的晶体具有复杂的形态,例如颗石,单细胞藻类产生的微方解石晶体阵列。颗石晶体的复杂形态被假设是由许多晶体面形成的,通过有机分子和生长晶体之间的精细调节的相互作用稳定下来。利用电子断层扫描技术,作者在三个维度上检查了多个阶段的颗石生长。作者发现晶体只表达一组对称相关的晶体面,这些面生长差异,产生高度各向异性的形状。形态手性的产生是由于晶体沿着这些切面的特定边缘定位。作者的发现表明,生长速率操纵足以产生复杂的晶体形态。

对晶体材料纳米尺度形貌的控制与它们的物理性质和潜在的应用有关。然而,晶体晶格固有的热力学性质决定了一种强烈的趋向于特定的低能量面,从而产生了特征形状(习惯)。相比之下,许多生物进化出了在非常简单的材料和环境条件下形成复杂的分层组织的晶体结构的能力。在这种生物矿化过程中,晶体的形态、成核位置、取向以及最终的形态都受到严格的控制。颗石[由称为颗石藻的单细胞藻类形成的微米大小的方解石(碳酸钙)鳞片]是生物控制晶体形态发生的一个主要例子。每个颗石由晶体亚单位组成,具有复杂的种特异性形态。颗石是在细胞内与一个特殊的囊泡形成的,称为颗石囊泡,钙和碳酸盐被输送到其中。在颗石囊泡内,晶体成核并围绕有机基底的边缘生长。

颗石结构的一个共同特征是晶体单元的交替排列,正如在V/R模型中确定的那样。根据该模型,两个单元类型组成一个颗石(一个V单元和一个R单元),具有方解石 c 轴相对于基底的垂直或径向方向。这些单元最初具有伪菱面体形态,与热力学稳定的{104}方解石菱面体非常相似。尽管如此,在完成后,它们的形态是高度复杂的,显示出各种表面,明显偏离简单的菱形习惯。

关于颗石形态发生的共识观点依赖于生物分子作为“雕塑家的工具箱”。其基本原理是,与生长晶体的特定立体化学相互作用,使这些生物分子的过程偏离稳定的热力学路径,进入局部动力学的最小值,从而产生潜在的无限形态。据推测,晶体成核是由基底外延的结果,晶体生长产生各种类型的晶体面,由“定制的”生物分子稳定。也有人认为,与手性有机改性剂的立体定向相互作用诱发方解石的手性习惯。

为了阐明颗石晶体的形态生长,作者研究了 Calcidiscus leptoporus 的大颗石,其具有特有的双屏蔽超微结构(图1A)。为了建立一个颗石生长的时间表,作者建立了一个提取细胞内颗石(ICCs)的程序。首先,在短暂的酸暴露下去除活跃钙化细胞的细胞外颗石。接下来,用低渗溶液使细胞破裂,从而释放ICCs。通过调节低渗溶液的pH值和化学性质,作者确保晶体形态不受影响。因此,ICCs充当晶体动态发展的“时间快照”。

提取的ICCs的扫描电子显微镜(SEM)图像(图1)显示了从100-200 nm的小菱形体到完全形成的手性颗石的中间形态演化序列。结构的整体手性甚至在初始单元的排列中也很明显,这类似于方解石的各向同性菱形习惯(图1E和1I)。观测到两种不同的晶体表面类型:(i) 具有直边的平面,表征两个盾牌的远侧(图1紫色箭头),(ii) 弯曲和光滑的表面,表征两个盾牌和茎区域的近侧(图1绿色箭头)。

作者使用高分辨率电子断层扫描技术在三维和不同生长阶段研究这两个单元的晶体形态。利用扫描透射电子显微镜(STEM)采集不同生长阶段的ICCs的层析图像,采用高角度环形暗场(HAADF)探测器进行三维重建。对早期生长阶段的颗石的三维分析显示,所有的晶体单元都暴露出扁平的晶体面(图2)。这些表面之间的二面角及其边缘之间的角与已知的{104}方解石菱面体的角一致,这表明只有这些稳定的晶体面显示出来。

作者观测到R单元位于它们的锐边,沿着颗石环的圆周排列(图2A),这种安排与其它物种的观测结果一致。这很有趣,有两个原因:(i) 由于几何上的考虑,与传统的V/R模型不同,将{104}菱形对齐在其锐边加强了晶体 c 轴的子径向方向,打破了径向对称,并向突出结构传递手性(图2A,青色箭头);(ii) 它挑战了外延的概念,因为晶体应该具有平行于成核表面(即基底)的小面,而不是边缘。尽管在V单元中不太清楚(初始晶体的菱形不那么明显),作者也看到晶体的 c 轴具有亚垂直倾斜,这是菱形在钝角边缘上定向的结果(图2B)。由于作者的数据缺乏导致这种晶体定向调控机制的信息,基底作为成核表面的作用仍然是一个开放的问题。

为了将形态信息与晶体的晶体学结构联系起来,作者从环形暗场(ADF) STEM中分析相邻的R单元,并结合扫描纳米束电子衍射(NBED),后者采用从光束光栅所经过的每一点收集衍射模式。分析证实了各单元之间的相对倾斜,以及每个 c 轴相对于颗石周长的子径向偏移(图2C-2E)。这些对早期ICCs的分析使作者能够将“经典”的V/R模型(该模型以 c 轴方向为中心,是手性的)细化为一个更精确的基于锐/钝边的晶体菱形的晶体学表征。这一观点将两个晶体学特征合并为一个基本结构,其中倾斜的轴和手性的超结构都起源于晶体的初始定位。

为了了解颗石晶体生长和互锁的方式,作者详细分析了单个晶体单元的形态。对5个颗石进行部分分割,反映了适合断层扫描的颗石生长阶段(图3)。推导出的“时间线”揭示了几个关键方面:(i) 两种单元类型都表现出从相对各向同性的菱形向成熟各向异性晶体的转变(图3A和3B);(ii) 两种单元类型的特征面在整个生长过程中都呈现结晶性,而一些区域(茎区、盾的近侧和相邻晶体之间的界面)保持弯曲形态(图3C);(iii) 整个晶体生长过程中类晶面之间的二面角均对应{104}习惯。

这条时间线显示了初始晶体的等效{104}晶面以各向异性的方式发展,从而产生了尺寸非常不同的成熟的{104}晶面(图3D和3E)。这些观测结果表明,晶体的复杂形态不是由各种类型的晶体面造成的,而是由化学等效{104}晶面的生长差异造成的。

观测到晶体生长只伴随着{104}晶面的表达式(图3),并且这些{104}晶面以不同的速度生长,提出了一个关键的问题,即导致这种对称性破坏的因素。这个难题来自于所有六个{104}晶面的对称性和化学等价性,这样就没有一个晶面具有与其它晶面不同的内在生长速率(即钙和碳酸盐对任何特定的{104}晶面不应该显示出关联或离解偏向)。

为了理解这些化学等效面的各向异性是如何出现的,作者分析了特定面的生长模式。观测到两种截然不同的模式:(i) 单个晶体单元的对称相关晶面对的微分生长[例如(-114)和(104)晶面,图4A],其中一个面比它的相对面和/或相邻面生长得更快,导致一个各向异性图案;(ii) 面对相同环境的两种不同单元类型(R和V单元)的面生长差异(图4B)。在后一种情况下,晶面首先出现在彼此的水平上,但最终V单位不断超过R单位(图4B)。这两个例子都显示了两个化学上相同的方面,但由于某种原因,它们的生长速度不同。

在均匀溶液中,等效晶面的各向异性生长与其相同的生长动力学是不相容的。然而,在原子尺度上,方解石的生长通过锐角和钝角两个阶段进行,每个阶段都有不同的生长动力学。因此,晶体生长环境中的纳米尺度不均匀性会导致晶体生长的各向异性。在几种颗石藻中,结晶发生在极端限制条件下,晶体和囊泡膜之间只有几十纳米的距离。这种限制直接表现在晶体形态上,如非晶体表面,这是由颗石囊泡的划界膜造成的生长的物理模块。作者提出,通过在颗石囊泡创建一个分级的纳米环境,该限域环境也直接影响晶体生长。例如,由囊泡膜上的离子转运体产生的局部离子通量可能产生浓度梯度。它仍然是必要的特征,化学和结构,细胞环境及其与生长晶体的相互作用。

图4C-4E,说明了这种浓度梯度如何在原子尺度上不同地影响生长步骤,导致等效面不同的生长动力学,从而导致各向异性生长。例如,当晶体的一个面比另一个面经历更高的离子浓度时,它将更快地向离子源生长(图4C)。更有趣的是,当不同晶体的两个相邻面呈现出不同的几何形状,它们的原子步向离子梯度(图4D),导致其中一个晶体生长更快。在纳米级梯度(图4E)的存在下,阶梯取向的差异打破了相邻晶体之间的对称性,并可以解释它们的各向异性生长。

颗石晶体生长不是一个过程,源于晶体生长的多重操纵;相反,它取决于方解石及其菱形几何结构的稳定习性所产生的各种后果。这种生长机制可以通过离子传输的速率和位置来控制,而不是通过“定制”修改特定的晶体面。作者可以想象颗石组装的初始条件的改变(例如单位取向、单位间距、离子通量方向或生长过程中的膜位置)如何显著影响最终的颗石形态。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/170703.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-26
下一篇2023-03-26

发表评论

登录后才能评论

评论列表(0条)

    保存