SEM扫描电镜图怎么看,图上各参数都代表什么意思

SEM扫描电镜图怎么看,图上各参数都代表什么意思,第1张

1、放大率:

与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。

所以,SEM中,透镜与放大率无关。

2、场深:

在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。

3、作用体积:

电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。

4、工作距离:

工作距离指从物镜到样品最高点的垂直距离。

如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。

5、成象:

次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。

6、表面分析:

欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。

表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。

观察方法:

如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。

尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。

扩展资料:

SEM扫描电镜图的分析方法:

从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。

图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。

将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。

参考资料:百度百科-扫描电子显微镜

百度指数是SEM经常会用到的工具之一,各项参数到底是什么意义呢?

1.用户关注度:

反映用户在百度搜索产品上搜索量的一个指标,用户关注度数值越大,说明百度上用户的搜索次数越多

2.媒体关注度:

反映过去30天内百度新闻搜索中与该关键词相关的新闻数量个一个指标,相关新闻越多,媒体关注度数值就越大。

3.上升最快的搜索词,有助于我们发现新出现的长尾关键词,这类长尾关键词较之那些之前就有的长尾关键词,往往有更低的竞争强度,能带来更高的投放效果。

计算SEM自由度有两种方法:

1、 一种是计算数据中observed variables indicators (变量)

之间的相关系数(correlations)的个数,一般用k来表示变量的个数,其相关系数的个数则为 k X

(k–1) / 2。如你的例子中有12个变量,它们之间的相关系数应该有12 X 11 / 2 = 66。

2、另一种是计算数据所有变量之间的variance-covariance (方差-协方差) 的个数,公式为 k X (k + 1) / 2。在本例中,共有

12 X 13 /2 = 78。

3、“模型所需的信息”也有两种对应的算法。与相关系数对应的算法是模型中所需估计的parameters

(参数),包括factor loadings (因子负荷,即λ,本例中有12个)、coefficients of exogenous factors

(自变量因子对因变量因子的影响系数,即γ,本例中有2个)、 coefficients of endogenous factors

(因变量因子对因变量因子的影响系数,即в,本例中有1个),三者相加共有 12 + 2 + 1 = 15个参数需要被估计。

如果按方差-协方差计算的话,那么需要被估计的参数,除了以上的λ、γ和в以外,还需要加上每个errors

of indicators(变量的残差,即δ和ε,本例中有12个),四者相加为 12 + 2 + 1 + 12 = 27。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/200445.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-02
下一篇2023-04-02

发表评论

登录后才能评论

评论列表(0条)

    保存