sem的模型介绍

sem的模型介绍,第1张

SEM简单介绍,以下资料来源

因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。

一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。

历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).

SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。

因果关系:

究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。

举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:

3. 这时还有可能出现更多的潜在变量:

这里我又举另外一个例子,回归模型

在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。

我们在举另外一个例子“路径分析”

路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。

在这里我们总结一下:

回归分析简单的说就是:X真的影响Y 吗?

路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。

在这里要提一下因素模型(factor model)

在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。

举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。

相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。

这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。

观察不同类型的材料做对比的话,尽量选取相同放大倍数的照片进行对比。这样的话更有说服力,SEM最大的作用就是观察材料的微观结构和形貌,如果准备写文章的话,文章中将你的SEM照片视野范围内的现象描述清楚即可。

金相观察是依赖可见光的反射,其原理是被腐蚀的晶界处发生漫反射,在照片上是暗的未被腐蚀的晶粒内部发生的是镜面反射,在照片上是亮的.SEM分二次电子像和背散射电子像:二次电子像必须腐蚀样品,不腐蚀的话什么都看不到.照完金相的样品可以直接照二次电子,但照片的情况有所不同,<1000倍时,二次电子像观察到的晶界是亮的,因为晶界被腐蚀掉,样品在晶界出现棱角,二次电子的产额大,因此是量的,晶界内部反而暗.如果倍数放到足够大,能够看清晶界处的腐蚀程度和凹凸情况背散射电子像是分析样品的成分分布,最好不要腐蚀样品,因为腐蚀样品会把第二相腐蚀掉.


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/201271.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-02
下一篇2023-04-02

发表评论

登录后才能评论

评论列表(0条)

    保存