人们为了让加了油的车跑更多路程
到底可以多努力?
停车熄火的玄学
以前手动档车盛行的时候,遇到堵车或是等红绿灯,很常看到老司机一顿操作然后将车熄火在路中间——为了省油。
确实, 汽车 在怠速(发动机空转)时的汽油消耗量因车而异,但是最多可以达到每怠速10分钟消耗0.1到0.4升汽油。同时,如果 汽车 怠速10秒以上,那么将 汽车 熄火再点燃能节省更多的燃油。[1][2]所以, 如果停车时间够长,而且你对熄火再点火这一套动作并不陌生的话,就值得将发动机熄火 。
开手动档的我 | giphy .com
开车不左转的神逻辑
在城里开车,如果碰到“怎么转弯”这种小问题,当然是怎么方便怎么来了。但是常年在路上跑的老司机们却不这么认为。
某全球快递巨头早在几年前就规定, 为了节省时间和燃油,自家的货车全都不许左转 (???)。不左转不是就更加绕圈圈还费油了吗?但人家的数据表示:“不左转”的政策让货车每年多送了超过30万件货物。
密歇根州也有规定,等灯的时候都要左转,也被称为Michigan Left | 360.here .com
这是因为世界上大多数国家都是左舵,货车在红绿灯左转时会在车道上长时间等待,不但增加油耗,而且由于增加了和他车交汇的次数,车祸的几率也大幅提升。通过判断路况和不左转的时机,二级省油成就立即get。
用最少的油跑最远的路
总共分几步?
不论是停车计时熄火还是永不左转,放在现实生活中还是有些夸张。但是我们知道,效率=有用功率/驱动功率,要想让开车的效率最大化,除了减少分母(用油)以外,其实大可以从分子上下功夫。
壳牌每年都在举办一个能源创新比赛—— 壳牌 汽车 环保马拉松(Shell Eco-marathon,下文用SEM代替) ,号召一众大中学生团队们挑战极限,挑战用一单位燃料究竟能够跑多远。也不卖关子了,直接报个数字——说出来你可能不信,在SEM的欧洲赛场上, 1升油可以跑3000多公里 。 虽然做到1升油跑如此远的方式五花八门,但有几项参赛窍门一定是万变不离其宗的。
壳牌 汽车 环保马拉松开幕仪式 | 壳牌
车身设计 - 流线型减低风阻
1
不难理解,在买车时,大家都会倾向于买那些看起来 更顺滑,流线型更好 的车型。虽然这样的车看起来拉风,但更多的是因为流线型更好的车风阻系数更小, 汽车 受空气阻力影响也更小,自然更省油。所以在SEM的车型设计环节,减小 汽车 的风阻系数是首先考虑的因素。
等重量胡萝卜小车和马铃薯小车同时从斜坡上滑下
我们给相等重量的胡萝卜和土豆安上轮子,从相同高度和坡度的小坡上滑下,胡萝卜微微先抵达终点。 梭形的胡萝卜和椭圆形的土豆相比,胡萝卜的风阻系数更小 ,相信设计飞机的大佬也明白这个道理,所以飞机都没有土豆形的。同样,在SEM中,大多数的车身也都被设计成了梭形或水滴形,仅仅是这样一个形状的变化,就 能让风阻系数降低10%乃至更低 。
不同外形 汽车 的风阻系数 | researchgate .com
不仅是形状, 汽车 行驶时还会受到来自地面的滚动阻力,这与车身重量密不可分。大部分车为了追求省油,会尽量减轻底盘、发动机、车身甚至司机的重量。就车身来说,学生们会巧妙地选择造车材料来减轻重量,甚至有用纸糊车这样的硬核操作;也会使用预浸布烘烤和3D打印,或是打造全碳纤维车身,总之将整车重量尽量控制在45kg以下。
减轻重量的效果是立竿见影的,比如我们对比了鸡蛋在新鲜状态下与被掏空以后, 处于同样风力下的移动情况,“空壳车”明显走的更轻松 。
新鲜鸡蛋车(上)和空鸡蛋车(下)在同样风力作用下的运动情况
车内构造-高燃烧效率
2
所以对于SEM的赛车来说,设计师往往会尽量同步减轻一些内部构造的重量,比如发动机。但是发动机作为车的“心脏”,更重要的还是起到供能作用。
燃油车的发动机的做功过程可以简单地总结为——油气在发动机气缸里混合,气缸被压缩到一定体积后被点燃,产生动力。我们用了两个大小不同的气球分别代表低压缩比(大气球)和高压缩比(小气球)的气缸,向其中加入等量泡沫小球来模拟燃料。 等量的燃料条件下,气球越大,燃料密度越低,空气燃烧不充分,也就是燃烧效率低 。 因此高压缩比的发动机在SEM中广受欢迎,大家都致力于把每一滴燃料都有效地用在多开1km的目标上。
模拟低压缩比环境,燃烧效率低
模拟高压缩比环境,燃烧效率高
同时,车上变速器的换档元件也可以被去除,只剩下一个传动比仅为一的发动机,可以直接将动力传送给后轮;润滑油在这样的位置就非常关键,因为 好的润滑油可以使其传动效率将得到大幅度提升 。我们在实验室找了一堆老旧的轴承,用它们做了一只风车。
都是实验室角落里扒来的旧轴承
光看油都觉得顺滑
在给轴承添加润滑油的前后,风车的转动速度明显有区别 。 (为了让风车转速更慢、对比效果明显,我们将风车放在了离风扇约2m处)
轴承润滑前
轴承润滑后
车内程序
3
而且还有专门的智能交互系统,通过各种可扩展性程序,可以更好地辅助“躺平了”的车手驾驶,还能实时储存行驶数据,方便团队分析比赛结果。
不仅要赢,而且要躺赢 | 壳牌
驾驶策略
4
相比现实生活中的 汽车 ,SEM参赛车辆的零部件都进行了专门的设计和调整,即使是大油门后的空档滑行也不会带来过高的油耗,或对零部件造成损伤,所以像空档滑行这种平时不能玩的骚操作在SEM中也将成为惯常。
滑到最后的才是王者 | re dd it .com
因此,在SEM上我们将会看到一个比较有意思的地方:大多数小车在比赛刚开始会使劲加速,达到高速时就会熄火并滑行一段距离,等到速度慢慢降下来后,再次点火加速。滑行期间驾驶员就安安静静地调整心态,观察路况并见机调整驾驶策略即可。
什么样的老司机
会热衷于这场疯狂的能源 游戏 ?
要想获得好成绩,参赛团队必须每年都不断精进自己的设计。这要追溯到1939年一群壳牌的工程师的一个玩笑,他们打赌看谁能让 汽车 更省油, 当时胜出的那位工程师勉强实现了21 km/L的成绩 ,虽然放到现在也就普通的家用车水平,但在当时却是难上加难。
而正是这样一个简单的玩笑,却慢慢演变为一场更有组织性的赛事——鼓励年轻人持续进行能源 科技 创新,让大学生通过造车来“用最少的能源跑最远的路”,争当最优秀、会开车的“好司机”。 到了 198 5年,世界上有了第一场SEM比赛。
198 5年获胜原型车合影,当年原型车所创下的最佳纪录为680 km/L | 壳牌
在今年,刚刚结束了欧洲站的SEM,将于 8月25日-28日 抵达 北京金港国际赛车场 ,来自 17所高校的22支车队 会在此一决高下。选手在报名比赛的时候会被分成原型车和城市概念车两组,每组下都能选择不同的能源类型:内燃机(汽油、乙醇、柴油)、电动。竞争有多激烈,让我们稍微回顾一下2018年的最佳战绩来感受一下:泰国的一支队伍打造出仅用1升乙醇就能跑2341.1公里的原型车,这 相当于从北京直接冲到广州市中心还能顺便去趟大梅沙 。
2018年乙醇组夺冠的泰国车队 | 壳牌
从 198 5年第一届SEM在法国正式启动,到2019年SEM首次来到北京,每一次比赛,都会有许多燃油高效的创新技术让人眼前一亮,背后与青年学生们积极的参赛热情密不可分。或是车身设计、或是动力系统、或是中控系统,通过举办SEM,极限挑战下产生的设计方案也给这群未来的 汽车 工程师们以启发和灵感。
世界主要能源消耗量 | University of Utah
参考文献
[1] Stodolsky, F., Gaines, L., &Vyas, A. (2000). Analysis of technology options to reduce the fuel consumption of idling trucks (No. ANL/ESD-43). Argonne National Lab., IL (US).
[2] Gaines, L., Vyas, A., &Anderson, J. L. (2006). Estimation of fuel use by idling commercial trucks. Transportation research record, 198 3(1), 91-98.
工业产品如何做网络营销推广?
一、自身网站营销
企业想要在互联网上进行网站营销,前提就是要有自己的网站。公司官网就相当于公司在互联网上的门面,门面的好坏关系到企业品牌的推广。企业想要发展就必须紧紧围绕企业品牌推广策略,采用任何营销方式,都是对自己企业品牌的植入传播,而网络时代为企业品牌的发展提供了更广阔的空间,同时也提供了全新的传播形式,网络已经成为品牌口碑传播的阵地。
品牌推广,塑造企业品牌形象,进行品牌营销。一个优秀品牌的'建立不但要有较高的知名度,同时还要有较好的美誉度。品牌营销的首要工作是建立本企业的专属网站,并想方设法让本企业网站鹤立鸡群,拥有鲜明的特色和个性。
二、搜索引擎营销
搜索引擎营销(SEM)是Search Engine Marketing的缩写,中文意思是搜索引擎营销。SEM是一种新的网络营销形式。SEM所做的就是全面有效的利用搜索引擎来进行网络营销和推广。SEM追求最高的性价比,以最小的投入,获得最大的来自搜索引擎的访问量,并产生商业价值。
三、网络广告
标准标志广告(BANNER)曾经是网上广告的主流,进入2001年之后,网络广告领域发起了一场轰轰烈烈的创新活动,新的广告形式不断出现,新型广告由于克服了标准条幅广告条承载信息量有限、交互性差等弱点,因此获得了相对比较高的点击率。润滑油产品企业可在新浪、网易、腾讯、搜狐、凤凰等网站发布软文广告,以提高企业的知名度和影响力。
四、竞价推广
竞价推广是把企业的产品、服务等通过以关键词的形式在搜索引擎平台上作推广,它是一种按效果付费的新型而成熟的搜索引擎广告。用少量的投入就可以给企业带来大量潜在客户,有效提升企业销售额。
五、信息发布
信息发布既是网络营销的基本职能,又是一种实用的操作手段,通过互联网,不仅可以浏览到大量商业信息,同时还可以自己发布信息。最重要的是将有价值的信息及时发布在自己的网站上,以充分发挥网站的功能,比如新产品的信息、优惠促销信息等。目前,中国发布产品供求信息,主要以慧聪网、环球资源、中国制造等网站为主。
六、视频营销
视频营销将“有趣、有用、有效”的“三有”原则与“快者为王”结合在一起。这正是越来越多企业选择网络视频作为自己营销手段的原因。视屏营销它具有电视短片的种种特征,例如感染力强、形式内容多样,又具有互联网营销的优势,例如互动性、主动传播性、传播速度快、成本低廉等等。可以说,网络视频营销,是将电视广告与互联网营销两者“宠爱”集于一身。
七、交换链接
交换链接或称互换链接,它具有一定的互补优势,是两个网站之间简单的合作方式,即分别在自己的网站首页或者内页放上对方网站的LOGO或关键词并设置对方网站的超级链接,使得用户可以从对方合作的网站中看到自己的网站,达到互相推广的目的。交换链接主要有几个作用,即可以获得访问量、增加用户浏览时的印象、在搜索引擎排名中增加优势、通过合作网站的推荐增加访问者的可信度等。润滑油产品企业可与大型行业网站合作,为企业形象添砖加瓦。
八、博客营销
博客营销是通过博客网站或者博客论坛接触博客作者和浏览者,利用博客作者的个人知识、兴趣和生活体验等传播商品信息的营销活动。博客营销不直接推销产品,而是通过影响消费者的思想来影响其购买行为。
九、微博营销
微博是一个基于用户关系的信息分享、传播以及获取平台,用户可以通过WEB、WAP以及各种客户端组件个人社区,以140字左右的文字更新信息,并实现即时分享。在微博的火热中,微博营销成为了现在网络营销的主流,许多企业纷纷试水微博营销,希望通过这个高人气平台来推广自己的服务或产品。润滑油产品也可以利用微博这个平台,及时发布企业产品消息,以聚人气,增加销售。
十、Email营销
Email营销就是指利用给潜在客户发邮件的形式,来展开新产品发布、优惠政策等信息传播的营销活动。除了推广产品,企业也可以给潜在客户发祝福信,感谢信,充分发挥Email营销的作用。
航空发动机(尤其是军用)要在非常有限的体积内追求极致的性能,需要更尖端的材料和更精细的设计,材料能满足几百至几千小时的稳定工作就可以了。三转子(三轴)发动机的是英国罗尔斯·罗伊斯,比如罗罗以前的RB211系列和目前的瑞达系列。
法国没有能力搞先进航空发动机,目前有能力搞先进航空发动机的只有两个国家三个公司,即英国的罗罗,美国的GE和普惠,效率,推力和涵道比,增压比,涡轮前温度都有匹配关系。涡轮前温度越高,匹配的总增压比会提高,民用大涵道比发动机涵道比尽量增大,匹配的风扇亚比会降低,军用小涵道比是尽量提高涡轮前温度,它的要求和民用不同。感觉已经到了现有常用材料的瓶颈了,镍基合金承载温度从700升到1000℃提升的比较快,到1100℃再往上就很难了。1400℃是镍基合金的熔点范围,现在已经0.8Tm了,更高的温度只能指望陶瓷叶片或复合材料叶片了。
现在的航空发动机有离心式和轴流式
地面燃气轮机希望实现高效率、低成本、耐久性和长时可靠性(温度相对低一点,要求材料在更长时间的(10万小时级)稳定运行),对体积要求相对低一点。地面燃气轮机工况相对稳定(比如电站),材料能使用更长的时间;而航发工况更复杂(起飞、爬升、巡航、剧烈机动)导致材料失效更快。这两个领域要做好的话,都需要几十年的持续投入和积累。如果德国和日本要搞先进航发的话,不少东西也是得从头开始。战后德国的人才流失严重,国防工业也被压制。此外也存在需求不足的因素。毕竟欧洲要直面苏联的压力,MD在欧洲防务是很上心的,欧洲人只要想要,总能从美国人那里搞到配备先进航发的战斗机。德国虽然在燃机领域颇有建树,但是航发和燃机的差异还是很大的,没有足够的驱动力,几大巨头们也不愿走这条无止境烧钱的路。
MTU利用自己在燃机领域积累的雄厚实力,参加了不少航发的国际合作,大多负责压气机和低压涡轮部分;核心机一般都是交给美英的合作中完成,这也算是术业有专攻吧。台风配备的EJ200好像也是RR负责核心机,德国人搞压气机。空客的航发都是固定的几家采购,RR(trent系列)、GE和PW(GP系列)或者一些合作成立的公司(像IAE的V2500),德国可能还是以参与为主。自然科学,和工业是可以积累一步一步往前走,所谓后人站在巨人肩膀上。接下来二流的人才从事商业贸易,三流的进了IT行业。那搞技术的,认清形势以后还能坚持的就只有四流的了。最后的最后,把科研落实到生产的现场工人,他们是被很多人看不起的,航发却要通过他们的双手生产,组装,调试。
这长图片更直观
我个人认为航发追求的是极端恶劣条件下(高温高压高应力)保证长期的、稳定的、极端的性能。这个高温就难倒了很多领域:半导体工业有很多技术难点,但是常温或100~200℃左右的问题起码可以通过各种常见设备(SEM,TEM,FIB,3DAP等等)进行研究,实验方法也是成熟的,即使是原位研究是可能的。而在航发中,如高速(甚至是超音速)气流中的燃烧问题、材料在极高温度下(1000℃)的蠕变以及相变过程的原位研究等就是用现有手段难以实现的。
对物理过程的认识和工程方面的实践都存在巨大困难的前提下,还要不断推进技术前沿,我认为是能称得上最难。准确来说是风扇带动的外涵气流产生了超过整机80%以上的推力,单个叶片上的气动载荷超过2吨,而工作时的离心载荷更是达到13吨以上,而GE90-115B的复合材料+钛合金包边叶片更是作为工艺品在博物馆展出(具体哪个博物馆想不起名字了),而作为GE90的后辈GEnx将风扇叶片减少至19片,其单片叶片所承受的气动载荷更大(具体数值没有查过)。
马赫数较低的阶段,涡扇发动机效率高
涡轮其实是个能量转换的部件,就像水轮机的涡沦把水流的势能转换为发电机转子的动能再来发电。航发涡轮是把燃油燃烧产生的热能转化为涡轮旋转的动能,继而带动风扇和压气机产生推力。涡轮温度越低,燃油的热能散失的越多,转化效率越低,所以这是没办法的事情。合金叶片对高温的承载能力有限,可不可以换种思路,将材料的研究着力于耐高温涂料上,高温涂料经过特殊的工艺处理能达到很好的效果,可以减少对金属材料的依赖,转而在涂料材料上去的巨大突破。目前来看,未来可能的替代材料是陶瓷基复合材料(CMC),它的温度能比金属高很多,甚至不需要涂层,但是还有很多问题需要解决。据说GE搞过实验,结果我还不了解。这应该还是很有希望的一条路。
发动机材料不是任何东西都离不开铁,而是铁作为杂质不太好完全消除,而且现在国内的镍基高温合金国军标铁含量也已经可以降低到0.05%,实际产品铁含量更低。而且也不是所有的镍基高温合金都不含铁,比如发动机中用量最大的IN718合金,是含有18%的铁,因为铁便宜。还有,发动机材料选用镍基而不是铁基最主要的原因并不是铁的蠕变温度问题,而是因为铁会发生同素异构转变,镍则不会。此外,钴基材料是更好的高温结构材料,但钴价格太昂贵,所以综合来说镍基材料是最优的。航空发动机为了进气顺畅,是没有致密滤网这种东西的,最多在入口安装惯性或者离心分离器。只有地面装备的燃气轮机如M1 Abrams装备的AGT1500燃气轮机,出于使用环境需要,才会加装滤网,不过M1每次大修发动机时,会发现许多压气机叶片都被没过滤干净的沙粒打出凹坑或者边缘受损。
早期的风扇是窄弦风扇,由实心钛合金锻造而成
俄罗斯(前苏联)很擅长利用系统工程理论,将一个个不够先进的零部件整个成为整体性能突出的产品,最典型的莫过于前苏联米格25歼击机。和欧美同类军工产品相比,俄罗斯的相关产品具有易于维护,粗犷的特点。不能说精良的、精密的就一定是好的,各有各的优点。二战时期的苏德战场将两种风格的优缺点暴露无遗:德式坦克(虎式、豹式等)做工十分精良,制造工艺在当时相当先进,但对维护的要求很高,产量低,在恶劣的苏联冬季气候中无法有效发挥自身的效力;反观苏式坦克(如T-34),结构简单,可利于大规模制造,操作更简单,斯大林格勒拖拉机厂的工人在生产出一台T-34后自己就驾驶着上战场了。随着战事的不断进行,德军装备战损严重,不能得到及时补充,而苏军的装备源源不断涌向战场,最后德军被活活拖垮。
所以,极端追求设备的先进性成为很多人的误区,如何是现有设备发挥最大效力可能是需要重点解决的问题。飞天巡洋,动力先行,航发技术关乎国家军事力量,是各国最精尖端技术的集合,其面临的问题之广之繁之困难,试验成本之高是难以想象的,比如涡喷发动机燃烧室温度越高性能越好,但哪种材料怎样处理可以在如此高温下的使用就成为了绝对屏障,因为不可能去穷举试验。航发看似粗旷实则精密之极。
航发和燃气轮机的做功过程是布雷顿循环
开发新材料的脚步从未停下,只是在这种环境下满足要求的材料确实比较难开发。现在也有脉冲爆震和超燃冲压发动机的研究,但是在跨音速段,涡扇确实是非常有优势。希望以后能有反重力引擎吧。内流空气系统对维持发动机瞬态工作条件的稳定十分重要,如果稍有闪失就可能导致部件局部过热或者零件间隙偏差过大进而影响性能甚至导致安全事故。钛合金一般用在风扇和压气机叶片,工作温度比较低,正常情况下不会发生钛火。我以前看过一篇关于钛火的论文,主要原因一方面是外物撞击等造成的剧烈摩擦、冲击导致压气机钛合金叶片发生钛火;另一方面就是喘振等导致高温气体从燃烧室反向冲到压气机,导致叶片发生钛火。
为了提高航空发动机性能,RR搞的三转子发动机,pw搞的是齿轮传动,目的都是解藕中压涡轮或低压涡轮与风扇或中压压气机的转速(传统设计,他们是在一根轴上)。大函道比发动机风扇要求叶尖尽量不超音,而风扇直径很大,所以风扇转速不能太高,否则效率恶化。低压涡轮增好相反,转速越高效率越高。一个绳子栓了两蚂蚱,只能互相妥协。我比较关心航发的轴承使用和维护,以现在高氮合金钢轴承(内外圈)氮化硅(陶瓷球滚动体)还是无法满足航发的实际工况温度要求。
那就需要润滑系统的补充,首先是满足高速、高温、高负载(高扭矩)能形成良好油膜,其次需要润滑油交换带走热量,并冷却后输回(油路循环系统)。轴流式更适合多级排列,提高压气比,但是相应的就出现了空气倒流的可能,所以引入了可调静止叶片的概念,和放气活门的概念防止喘震,另外n1 n2转子的速度匹配也要精确控制,因为n1可以认为空转,而n2却要带动其他附件转动,所以转子间的速度匹配也十分困难,就更不用说Rb211及其后来的三转子系列了,所以能搞三转子技术的公司很少。
压气机采用转子+静子的结构
但为什么一定要搞三转子呢?因为三转子相对于2转子压气机的压缩过程更平滑,更加不容易喘震、也就是说可以提高压气比,从而提高涡轮钱燃气总压,提高推力,换句话说,如果难度不大,转子越多可能从某一角度说,发动机将会越好。
航空发动机经历了活塞,涡喷,涡扇三代了,涡扇的潜力也基本到头了,新一代超燃冲压以及爆轰发动机我们和西方站在同一起跑线上,虽然我们基础方面还是会差一点,但是靠着集中力量办大事的优势,下一代发动机上和美英比肩还是很有可能的。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)