新型高性能纤维M5的研究与应用
摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5).简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性.除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好.文中还展望了M5纤维的应用前景.
前言
近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展.但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差.纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2].通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度.因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题.
作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来.聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3].由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能.
1高性能纤维M5
1.1 单体的选择及M5的合成[4]
在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成.TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:
在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应.若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用.
另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:
M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:
2 M5的分子结构特征及聚合物的聚集态结构
2.1 M5的分子结构特征
M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键.因此,其压缩和扭曲性能为目前所有聚合物纤维之最.M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性.由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5].图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5].图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在.
图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图
图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图
2.2 M5的聚集态结构
图3 PIPD-AS沿C轴方向的分子结构示意图
如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构.由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能.表2和表3所列出的实验结果也证实了这一结论[16,19].
如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16].从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构.有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高.
图4 不同热处理温度的PIPD-AS纤维WAXD图
Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示).单斜和三斜的晶胞参数分别为:
单斜结晶: a=12.49 ,b=3.48 ,c=12.01 ,=90°,=107°,=90°
三斜结晶:a=6.68 ,b=3.48 ,c=12.02 ,=84,=110°,=107°
Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:
a=13.33 ,b=3.462 ,c=12.16 ,=84°,=105.4°,空间结构为P21/,
单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度.
图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影
3 M5纤维的纺丝工艺[9,16]
3.1 M5纤维的成形
M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为6.0×104~1.5×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维.其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 m.所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥.
图7 M5纤维的热处理示意图
3.2 M5纤维的热处理
为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示.在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大.对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能.M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维.在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的.因此,热处理温度与热处理时间对M5纤维的模量影响很大.
4 M5纤维的性能
4.1 力学性能
图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图
如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象.Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的0.7Gpa提高到1.7Gpa,而经过400℃热处理的初生纤维压缩强度由原来的0.7Gpa提高到1.1Gpa.显然对于PIPD的初生纤维来讲,并非热处理温度越高越好.通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高.
表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等.与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为1.4%与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPaM5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17].
表1 M5纤维与其它高性能纤维的比较
纤维
拉伸强独/Gpa
断裂伸长/%
初始模量
/ Gpa
压缩强度
/ Gpa
压缩应变
/ %
密度/(g.cm-3)
回潮率
/%
Twaron-HM
3.2
2.9
115
0.48
0.42
1.45
3.5
C-HS
3.5
1.4
230
2.10
0.90
1.80
0.0
PBO
5.5
2.5
280
0.42
0.15
1.56
0.6
M5
5.3
1.4
350
1.60
0.50
1.70
2.0
纤维
空气中的热稳定性
/℃
LOI
/%
电导性
抗冲击性
抗破坏性
编制性能
耐紫外性
Twaron-HM
450
29
-
++
+
+
-
C-HS
800
N/A
++
--
--
--
++
PBO
550
68
-
++
N/A
+/-
--
M5
530
>50
-
++
++
+
++
M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和1.6GPa,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高.
图9 M5纤维的轴向压缩SEM图
一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构.而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11].如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多.
4.2 阻燃性能
表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]
试样
PHRR①
(kWm-2)
TTI②
(s)
SEA③
FPI④
(sm2kW-1)
残留量
(%)
PIPD-AS
43.7
77
224
1.760
61
PIPD-HT
53.7
48
844
0.890
62
PBO-HM
47.7
56
2144
1.170
72
Twaron
204.4
20
70816
0.098
11
Nomex
160.4
14
38670
0.087
24
PVC
253.0
14
113937
0.055
15
注:①热量释放最大速率(PHRR)②引燃时间(TTI)③比消光面积(SEA)④耐燃性能指数(FPI)
表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值.纤维试样放在一块1cm2的线网上.试样原始重量在10.3g-11.5g之间.
从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为43.7kWm-2,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料.PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维.SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维.同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为1.76sm2kW-1.从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景.
M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性.从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟.M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近.M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7].
4.3 界面粘合性能
与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂.M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8].
4.4 热力学性能
图10 四种不同含水量M5纤维的DSC扫描图
图10为M.G.NoRTHoLIT[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图.研究发现将1g试样材料放在一个开放的测试槽内,以0.2℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示.从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关.从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别.通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似.
表3 不同含水量的PIPD纤维的热吸收值
试样
热吸收值(J/g)
PIPD初生纤维(含水量20%)
637
PIPD初生纤维(干燥)
163
PIPD HT(含水量7%)
378
PIPD HT(干燥)
185
5 应用及展望
作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景M5纤维可用于航空航天等高科技领域用于国防领域如制造防弹材料用于制造运动器材如网球拍,赛艇等.
M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力.与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业.由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.
正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究.相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用.
碳纤维(Carbon Fibre,简称CF)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上(其中含碳量高于99%的称石墨纤维)。碳纤维是有机纤维纤维经预氧化、碳化成的纤维状聚合物碳,既不属于无机纤维,也不属于有机纤维。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。碳纤维与传统的玻璃纤维相比,杨氏模量是其3倍多;它与凯夫拉纤维相比,杨氏模量是其2倍左右,在有机溶剂、酸、碱中不溶不胀,耐蚀性突出。因此碳纤维及其复合材料近年来发展十分迅速。
可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。
经过多年的发展目前只有 粘胶(纤维素)基碳纤维 、 沥青纤维 和 聚丙烯腈(PAN)纤维 三种原料制备碳纤维工艺实现了工业化。
用粘胶基碳纤维增强的耐烧蚀材料可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。
虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而 实际碳收率仅为30% 以下 。所以粘胶(纤维素)基碳纤维的制备成本比较高, 目前其产量已不足世界纤维总量的1% 。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以 在军事工业方面还保留少量的生产 。
1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此, 沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线 。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。
目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。
PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前 应用领域最广,产量也最大的一种碳纤维 。
聚丙烯腈基 碳纤维的生产主要包括原丝生产和原丝碳化两个过程。
原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。
碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕等工序。
PAN基碳纤维生产的流程图如图1所示。
在一定的聚合条件下,丙稀腈(AN)在引发剂的自由基作用下,双键被打开,并彼此连接为线型聚丙烯腈(PAN)大分子链,同时释放出17.5kcal/mol的热量,即
生成的聚丙烯腈(PAN)纺丝液经过湿法纺丝或干喷湿纺等纺丝工艺后即可得到PAN原丝。
预氧化和炭化过程生产线示意图如图2所示。
如图2所示,PAN原丝经整经后,送入1#预氧化炉、2#预氧化炉制得预氧化纤维(俗称预氧丝);预氧丝进入低温炭化炉、高温炭化制得碳纤维;碳纤维经表面处理、上浆即得到碳纤维产品。全过程连续进行,任何一道工序出现问题都会影响稳定生产和碳纤维产品的质量。全过程流程长、工序多是多学科、多技术的集成。
均聚PAN的玻璃化温(Tg)为104℃,没有软化点,在317℃分解,共聚PAN的Tg大约在85~100℃范围内,共聚组分不同、共聚量的差异,使Tg随之变化。共聚含量越多,Tg越低。预氧化的温度控制在玻璃化温度和裂解温度之间,即200~300℃之间。预氧化的目的是使热塑性PAN线形大分子链转化为非塑性耐热梯形结构,使其在炭化高温下不熔不燃、保持纤维形态,热力学处于稳定状态。预氧化的梯形结构使炭化效率显著提高,大大降低了生产成本。同时,预氧丝(预氧化纤维OF)也是一种重要的中间产品,经深加工可制成多种产品,直接进入市场,并已在许多领域得到实际应用。
PAN原丝经预氧化处理后转化为耐热梯形结构,再经过低温炭化(300~1000℃)和高温炭化(1000~1800℃)转化为具有乱层石墨结构的碳纤维。在这一结构转化过程中,较小的梯形结构单元进一步进行交联、缩聚,且伴随热解,在向乱层石墨结构转化的同时释放出许多小分子副产物。同时,非碳元素O、N、H逐步被排除,C逐渐富集,最终形成含碳量90%以上的碳纤维。
另外,通过对碳纤维的进一步石墨化还可以获得高模量石墨纤维或高强度高模的MJ系列的高性能碳纤维。即在2000~3000℃高的热处理温度下牵伸石墨化,使碳纤维由无定型、乱层石墨结构向三维石墨结构转化。
对于碳纤维来说,预氧化时间为近百分钟,炭化时间为几分钟,石墨化时间较短,一般只有几秒到数十秒。
1、实现原丝 高纯化、高强化、致密化 以及 表面光洁无暇 是制备高性能碳纤维的首要任务。碳纤维系统工程需从原丝的聚合单体开始,实现一条龙生产。原丝质量既决定了碳纤维的性质,又制约其生产成本。优质PAN原丝是制造高性能碳纤维的首要必备条件,这是多年经验的总结。
2、杂质缺陷最少化,这是提高碳纤维拉伸强度的根本措施,也是科技工作者研究的热门课题。在某种意义上说,提高强度的过程实质上就是减少、减小缺陷的过程。
3、在预氧化过程中,保证均质化的前提下,尽可能缩短预氧化时间。这是降低生产成本的方向性课题。
4、研究高温技术和高温设备以及相关的重要构件。高温炭化温度一般在1300~1800℃,石墨化一般在2500~3000℃。在如此高的温度下操作,既要连续运行、又要提高设备的使用寿命,所以研究新一代高温技术和高温设备就显得格外重要。如在惰性气体保护、无氧状态下进行的微波、等离子和感应加热等技术。
1、预氧化炉碳
目前,大型预氧化炉采用多层运行方式以提高生产效率。按照加热空气的组件在预氧化炉的内部与外部的区别,这些大型预氧化炉可以分为内热循环式和外热循环式两种。外热式可利用废气进行再次热交换,利于节能,如日本东丽公司的千吨级预氧化装置就为该形式;而内热循环由于受热风均匀性限制,一般应用于小型或试验线中。图3为一种外热循环式预氧化炉示意图。
图3所示的预氧化炉均为钢板框架焊接结构,分为三层,热风从顶部进入炉膛,通过上层炉体安装的孔板,形成一定的温度梯度,均匀穿过丝束,使丝束发生预氧化反应,从下层的循环风出口通过过滤和再加热后,从顶部循环进入。为控制进入炉膛内部的热空气量,上部炉体设有解压门(见图示),压力到设定值时,解压门自动打开卸荷。由于PAN原丝易蓄热,容易过热而引起失火,故在上部炉体设有消防喷水管路。由于炉体高大,故内部设有走台。中部炉体部分在操作侧设有移动门,移动门可正向移出,移动门上设有透明观察窗口,便于观察丝束预氧化情况。由于该种形式的辊体在炉膛外部,因此在炉膛与外界之间设有预热室,预热室内部的热风循环系统是单独分开的。
2、炭化设备
炭化炉一般分为低温炭化炉(300~1000℃)和高温炭化炉(1000~1800℃)两种。预氧丝先经过低温炭化炉,然后再进入高温炭化炉,两者形成温度梯度,以适应纤维结构的转化。低温炭化炉如图4、图5所示。
高温炭化炉如图6所示。
将耐热梯型结构的有机预氧丝经过高温热处理转化为含碳量在92%以上的无机碳纤维,实现这一转化的关键设备是碳化炉。工程实践与研究表明:其核心技术是宽口碳化炉及其配套的迷宫密封、废气排除和牵伸系统。对于百吨级碳纤维生产线,炉口宽度需在1 m以上,而且要正压操作,就需非接触式迷宫密封装置;为使热解废气不污染纤维,排除系统要畅通而瞬时排出;牵伸系统则是制造高性能碳纤维重要手段。
3、石墨化炉
目前使用的石墨化炉大多是以石墨管为发热体的卧式炉,图5为一种塔姆式石墨化炉示意图。
另外,还有以高能等离子体为热源的石墨化炉、高频石墨化炉,分别如图6、图7所示。
日本是全球最大的碳纤维生产国,日本的三家企业:日本东丽、日本东邦和日本三菱丽阳目前拥有全球丙烯腈基碳纤维 50%以上的市场份额。目前,世界碳纤维技术主要掌握在日本公司手中, 其生产的碳纤维无论质量还是数量上均处于世界领先地位,日本东丽更是世界上高性能碳纤维研究与生产的 “ 领头羊” 。碳纤维最成熟的技术在日本。
美国是继日本之后掌握碳纤维生产技术的少数几个发达国家之一,同时又是世界上最大的丙烯腈基碳纤维消费国,约占世界总消费量的 1/3。
世界碳纤维的生产主要集中在日本、 美国、 德国等少数发达国家和我国的台湾省。其中, 碳纤维最大生产商日本东丽、 日本东邦、 日本三菱丽阳的产量合计占全球产量的一半以上。
2017 年全球碳纤维产能区域分布
参考资料:
[1] https://wenku.baidu.com/view/837ffa2728ea81c759f578e8.html
[2] https://wenku.baidu.com/view/359ca266b207e87101f69e3143323968011cf4b1.html
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)