怎么用sem模型分析顾客满意度

怎么用sem模型分析顾客满意度,第1张

结构方程模型(Structural equation modeling,

SEM)是一种融合了因素分析和路径分析的多元统计技术。它的强势在于对多变量间交互关系的定量研究。在近三十年内,SEM大量的应用于社会科学及行为科学的领域里,并在近几年开始逐渐应用于市场研究中。图中的Xn是待构建的测量指标,λ值表示各指标对上级指标的影响大小,ζn和δn表示误差,是受模型外因素影响的部分,如价格满意度等其他因素。由上图可以看出,服务方面的感知满意度对总体满意度的影响远高于产品满意度,再结合服务满意度的得分情况,可以得出结论,该通信分公司应着重改善服务满意度。

顾客满意度就是顾客认为产品或服务是否达到或超过他的预期的一种感受。结构方程模型(SEM)就是对顾客满意度的研究采用的模型方法之一。其目的在于探索事物间的因果关系,并将这种关系用因果模型、路径图等形式加以表述。

SEM模型的基本框架图册在模型中包括两类变量:一类为观测变量,是可以通过访谈或其他方式调查得到的,用长方形表示一类为结构变量,是无法直接观察的变量,又称为潜变量,用椭圆形表示。

各变量之间均存在一定的关系,这种关系是可以计算的。计算出来的值就叫参数,参数值的大小,意味着该指标对满意度的影响的大小,都是直接决定顾客购买

与否的重要因素。如果能科学地测算出参数值,就可以找出影响顾客满意度的关键绩效因素,引导企业进行完善或者改进,达到快速提升顾客满意度的目的。

结构关系方程模型(SEM)属于验证式的协方差结构模型分析,完整的协方差结构模型包含两个次模型:①测量模型(如图),潜变量(即不可自我描述的因变量)被显性指标(即观察变量)所测量或概念化,测量模型也可以复杂一些,比如二阶测量模型,;②结构模型(如图),潜变量之间的假设关系,以及无法解释的变异量部分,以确认假设的潜变量之间的关系以及潜变量与显性指标的一致性程度。当然,复杂度更高的结构模型比比皆是,这就太考验理论能力、概念化能力、量表设计能力和SEM模型控制能力了。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/225473.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-08
下一篇2023-04-08

发表评论

登录后才能评论

评论列表(0条)

    保存