首先SEM更加灵活,更加综合。传统方法的模型是提前规定的或者说是默认的,而做结构方程的时候,它对变量关系的限制几乎没有,需要你自己根据理论知识设定变量之间的关系。SEM既包含显变量又有潜变量,而传统的方法之分析显变量。在SEM中我们认为误差是存在的,你甚至可以规定不同变量之间误差的关系,但是传统的方法认为误差是没有的。传统方法能够输出变量间关系的直接的显著性检验结果,而SEM没有这样的结果,我们得用拟合指标来评价模型。结构方程模型可以很好地容忍多重共线性。
组间系数差异检验的结果:直接看最后一个表的Sig(双侧),可以看到是.000,说明差异显著,一般Sig值小于.05就可以认为是显著了,这个配对T检验的结果表达的时候就说E1和E2在.01水平上差异显著即可。
SEM(包括AMOS)是通过比较男女样本的拟合度之差别来比较两组回归系数之间的等同性。不过,SEM的这种做法是有代价的:它将一个总样本分成两个小样本,结果是降低了Power of Analysis (统计分析效力),从而在没有降低犯Type I的误差的同时又提高了犯Type II误差。
无效假设
显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的几率(P)水平的选择。所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。经统计学分析后,如发现两组间差异是抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)