稍微多讲点有关EM立体成像技术:
1950年代,美国科学家在实验室,第一次使用SEM弄出了立体对,那时SEM还没有商品化!在一般摄影上被称作全息照相!
现在FEI公司有这样的选购软件,可以用在SEM或TEM上。自动控制样品台按照一定角度间隔倾斜,且保证倾斜同轴,每个角度保存一幅图像,然后把N个图像合成一个立体图像,是最为精准的技术。SEM形成表面立体形貌像,TEM的立体像和CT效果相同。由于要求样品台精度极高,且运算复杂,价格贼贵!
为了简化操作,节约成本,只看个大概!最常用的立体对方法是样品角度不变,电子束以一定允许的夹角从两个方向分别扫描一张图像,一张红色伪彩,一张绿色伪彩。把两张照片叠加,形成红绿重影像!然后戴个红绿镜片眼镜,也可看到立体图像,解决你的问题!
除了立体对技术,还有就是线扫描Y增益的示波器技术!
有些扫描电镜带有示波器,扫描发生器让电子束在划定的直线上扫描,然后把信号曲线画在直线上方,因为图像信号强度是电子束与像素表面角度的函数,一般认为曲线的高低起伏代表样品的高低起伏。如果将一帧图像均做Y增益,即可用软件合成一幅立体表面形貌像。有些厂商忽悠客户说此为表面立体像,其实很不严谨,因为很多时候会有假象存在,基本上没有实用价值,很多厂商取消了这个功能!
如果没有做以上的多角度观察,那就要考验成像信号的判断。就这张图像而言,可以肯定:金字塔在基底上凸起!棱角凸起信号强度高,发亮;凹陷信号强度低,发暗!
聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。
以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:
1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。
2.电子束 : 成像和实时观察
3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)
4.纳米机械手: 转移样品
5.EDS: 成分定量和分布
6.EBSD : 微区晶向及晶粒分布
7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min
由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:
图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。
FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:
1)在样品感兴趣位置沉积pt保护层
2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片
3)对薄片进行U-cut,将薄片底部和一侧完全切断
4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片
5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成
6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)
一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。
图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。
FIB-SEM还可以进行微纳图形的加工。
图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。
图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。
图6c 是在Au膜上加工的三维对称结构蜘蛛网。
图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。
FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。
利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。
最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。
不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。
传统扫描电子显微镜(SEM)配有接收二次电子的探头(ET),它的工作原理:ET探头通过接收样品的二次电子,经光电倍增管放大后,信号再输到前置放大器放大。最后去调制显象管或其它成象系统(见图1);但它只能在高真空下工作,因此只光电倍增管图1能观察不含水分的固体导电样品相通过脱水、喷金属化等处理后的生物样品。对于含有适量水分的新鲜生物等样品,传统扫描电镜就无法满足要求。因此,人们渴望既能在高真空下又能在低真空下甚至能在大气环境下工作的扫描电子显微镜。二十世纪八十年代,随着真空系统中多重限压狭缝技术开发成功(即将样品室与柱形导管之间的真空隔开)和气体二次电子探头的研究成功。美国E1ectro Scan公司于1990年推出第一台商用环境电子显微镜(ESEM)。环境扫描电子显微镜的诞生,把人们引入了一个全新的形态观察的领域。
2环境扫描电镜的工作原理和特点
2.1 工作原理
环境扫描电镜有二个探头(ET和GSED),分别在高真空和低真空下工作。因此,它除了保持传统扫描电镜功能外。由于增加了GSED探头,就增加了新的功能。GSED可以工作在低真空(约达20Torr)下,它安装在物镜极靴底部,探头上施以数百伏的正电压以吸引由样品激发出的二次电子,二次电子在探头电场中被加速并碰撞气体分子使其电离,部分气体电离成正离子和电子(这些电子被称为气体二次电子),这种加速一电离过程的不断重复,使初始二次电子信号呈连续比例级数放大,GSED探头接收这些信号并将其直接传到电子放大器放大成电信号去调制显象管或其它成像系统(见图2)
2.2工作特点
(1) GSED探头不含高压元件,可以在低真空的多气体环境中工作,故可以观察含有适量水分的生物样品;(2)信号的初始放大靠电离气体分子进行,不再需要光电倍增管,GSED探头对光、对热不再敏感,故可以观察发光材料和使用热台;(3)当绝缘样品表面沉积电荷时,形成的电场会吸引被电离的气体中的正离子而被中和。故非导体样品表面不再进行金属化喷涂处理,从而更好地观察样品表面的细节;也节省了处理样品的中间环节; (4)由于GSED探头弥补丁ET探头的缺点,使得环境扫描电子显微镜的运用范围大大扩展。样品室内的适量气体对其工作性能不但没有影响,反而有益,气体越容易电离,所获得的放大增益越高,改变探头的偏置电压即可调节增益或适应于不同的气体。由于水蒸汽获取方便,没有毒性,容易电离,成像性能佳,因此成为员常用的气体。但GSED由于在物镜极靴下面,正对着样品,被放射电子由于能量大,能直接射向GSED探头,因此图像背景较深,对图像的对比度会有些影响。
3环境扫描电镜的应用
环境扫描电子显微镜除了具有传统扫描电子显微镜所有功能外,还具有在低真空下观察含有一定水份的样品和非导体样品。特别对生物样品的观察,省去了脱水、喷金属化等处理的中间制样环节,使得样品能保持原有的微观形貌,这对于观察研究生物微观形貌是非常重要的环节。在传统扫描电子显微镜中,动物、植物样品不通过脱水等处理是不能观察的。动、植物样品通过脱水等处理后,样品的微观形貌会产生变化,这是不可避免的,这会影响人们对生物微观形态的认识。但在环境扫描电镜中,动、植物样品可以不需要脱水等处理,使样品少变形或不变形,因而更真实地反映样品的微观形貌。环境扫描电镜在低真空下,员适用于观察那些具有一定强度和含水量很低的样品。比如植物的叶子,动物中的昆虫,作物的籽粒,含有结晶水的固体材料等。随着环境扫描电子显微镜实验技术条件的不断探索和完善,它在生物医学、林学、材料、化工、石油地质、建材、食品、轻工等研究领域会得到越来越广泛的应用。
图3、图4所示是纤维非导体样品在低真空下的图象。在真空度5.2Torr,加速电压15kV,放大倍数1000倍和4000倍下,非导体材料纤维样品的图象清晰,样品表面没有放电现象;而在高真空下,图象放电非常严重,无法成象。
图5所示是头发在低真空下的图象。在真空度2.5Torr,加速电压20kV,放大倍数500倍下,样品不需任何处理,图象很清晰,头发的鱼鳞片的细节很清楚。
图6所示是有湿度的混凝土在低真空下的图象。在真空度0.4Torr,加速电压20kV,放大倍数1480倍下,混凝土的颗粒清楚,没有产生放电。
对于新鲜含有适量水分的生物、动物样品的观察是环境扫描电子显微镜最大的特点。这方面的应用工作已在其他的实验室做了不少,相关的期刊发表了不少的这方面文章。
4实验过程一些问题的认识
虽然环境扫描电镜可以观察含水分的样品,但要出好每种样品的图象,难度还是比较大,必须花费一些时间来摸索,积累更多的经验,才能出好图象,特别在低真空下。在正确认识ESEM工作原理的基础上,在具体运用ESEM观察新鲜生物样品和其它含水样品时,掌握一些操作技术要领是非常必要的。例如:
(1)由于环境扫描电镜的低真空下并非真正的大气压力,样品的水分蒸发问题还是存在,观察时间若太久,势必造成样品因水分蒸发而使样品变形因此,观察和记录操作要尽可能地快。
(2)虽然ESEM的样品台一次可以同时装多个样品,但在观察含水分的生物样品或在真空下易变形的样品时,建议最好一次故人一个样品。
(3)在低真空下工作时,要接上Peltier冷台,该冷台的温度与样品室压力的设置很重要。要保持样品的新鲜度,保持样品的生活状态,温度和压力的设置必须使样品所含游离水处于临界状态,即水分不蒸发也不凝结,但针对不同生物样品的温度与压力条件是不相同的,这需要在实践中摸索并积累经验。
(4)在低真空下工作时,注意摸索样品最佳的工作距离。若工作距离远了,信号接收效果差;距离过近,气流也会影响信号接收效果。
(5)由于在低真空下观察时,样品一般高物镜极靴较近,所以要求样品表面高度差不能太大,特别是大样品,以免在移动样品过程中碰到物镜极靴。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)