目前有很多软件都可以非常便利地实现验证性因子分析,本文将基于SPSSAU系统进行说明。
因子分析可分为两种类型:探索性因子分析(EFA)和验证性因子分析(CFA)。
探索性因子分析,主要用于浓缩测量项,将所有题项浓缩提取成几个概括性因子,达到减少分析次数,减少重复信息的目的。
验证性因子分析与探索性因子分析相似,两者区别只在于探索性因子分析(EFA)用于探索因子与测量项之间的对应关系,验证性因子分析(CFA)用于验证结果与理论预期是否一致。
在实际研究中,验证性因子分析常会与结构方程模型、路径分析等方法联系到一起,对于不熟悉概念的研究人员容易搞混这些方法,下表对这几种方法进行简单说明:
探索性因子分析: 验证因子与分析项的对应关系,检验量表效度,非经典量表通常用探索性因子分析。
验证性因子分析: 验证因子与分析项的对应关系,检验量表效度,成熟量表通常用验证性因子分析。确认测量关系后,后续可进行路径分析/线性回归分析研究具体的影响关系。
路径分析: 用于研究多个自变量与多个因变量影响关系;如果因变量只有一个,可以使用线性回归分析。
结构方程模型SEM : 包括测量关系和影响关系。如果仅包括影响关系,此时称作路径分析(Path analysis,有时也称通径分析)。通常需要进行探索性因子分析和验证性因子分析,均保证测量关系无误之后,再进行结构方程模型构建。
从分析思路上看,建议先用探索性因子分析EFA构建模型,确定存在几个因子及各分析项与因子的对应关系,再用验证性因子分析CFA加以检验。
(1)模型设定
首先需要确定因子数及对应分析题项,顺序放入分析框内。
(2)模型拟合
通过因子载荷系数表格可以展示因子(潜变量)与分析项(显变量)之间的关系情况。如果因子与测量项间的对应关系出现严重偏差,或者因子载荷系数值过低,则需要删除掉该测量项。
分析时主要关注P值及标准载荷系数,建议结合SPSSAU给出的“分析建议”进行分析。
模型拟合指标用于整体模型拟合效度情况分析。
常用的拟合值及其判断标准,都展示在上表中,实际输出值在标准范围内及说明模型拟合程度较好。模型拟合指标非常多,通常下很难保证所有指标均达标,只要多数指标达标或接近标准值即可。
*常用指标包括卡方自由度比,GFI,RMSEA,RMR,CFI,NFI和NNFI。
(3)模型修正
根据模型拟合指标情况,评价模型的优劣,如果模型拟合情况不佳,则需要进一步修正模型。
MI指标越大说明该项与其他因子的相关性越强,MI过大时会干扰模型需要进行修正或剔除该项。
模型构建过程需要重复多次,以找到最优模型。同时SPSSAU会自动生成模型结果图。
(4)模型分析
在完成模型构建后,即可使用模型进行分析。验证性因子分析主要有三个方面的功能,分别是聚合效度、区分效度、共同方法偏差。
聚合效度
聚合效度,也叫做收敛效度。AVE和CR是用于判断聚合效度的常用指标,AVE>0.5,并且CR>0.7,则说明具有良好的聚合效度。如果AVE或CR值较低,可考虑移除某因子后重新分析聚合效度。
上图为SPSSAU输出的AVE、CR值指标表格,可以根据此表格进行查看。
区分效度
区分效度,常用的做法是将AVE根号值与‘相关系数值’进行对比,SPSSAU也会输出相应结果。
如果每个因子的AVE根号值均大于“该因子与其它因子的相关系数最大值”,说明具有良好的区分效度。
共同方法偏差
共同方法偏差,SPSSAU提供两种方法检验,一种是探索性因子分析(也称作Harman单因子检验方法),做法是将所有变量进行探索性因子分析,如果只得出一个因子或者第一个因子的解释力(方差解释率)特别大,则判定存在共同方法偏差。
另一种是验证性因子分析,所有变量全部放在一个因子里面进行分析,如果测量出来显示模型的拟合指标无法达标,模型拟合不佳,说明所有的测量项并不应该同属于一个因子,也就说明数据无共同方法偏差问题。
验证性因子分析需要较大的样本量,通常建议样本量至少为测量项(量表题)的5倍以上,最好10倍以上,且一般情况下至少需要200个样本。
一个因子对应的测量项最好在5~8个之间,便于后续删除掉不合理测量项。
绝大多数情况下均为一阶验证性因子分析。如果说验证性因子分析时为二阶模型,此时参数处选中‘二阶’即可。
一般来说,使用验证性因子分析需要有一定的理论基础支持,如果拟合指标不能达标,最好按照分析思路:探索性因子分析→验证性因子分析,进行分析。
以及对于不熟悉的步骤,建议大家阅读SPSSAU帮助手册的相关说明以及SPSSAU的教学视频。
验证性因子分析视频教学: https://www.bilibili.com/video/av69372013
复电阻率(CR)法测得的频谱包含了由导电性引起的近场区电磁谱(SEM)和由电极化性引起的激电谱(SIP),两种谱在频带上占据不同的位置。可用数学物理模型Cole-Cole模型和Cole-Brown模型反演拟合分离,求取多个SEM和SIP谱参数[1,2]。
在复电阻率法中观测到的电磁场(SEM)主要是近区场,场的区间划分依据感应数p的大小进行[3,4]:
电法勘探成果文集
均匀半空间上偶极-偶极排列的电磁相位谱研究表明:当p<2时为近区场,p=2~7.6时为中区场,p>7.6为远区场。其中近区场只与距离(r)有关,中区场与距离(r)和频率(f)两个因子有关,远区场仅与频率(f)有关。电偶源的各类电磁法,大多选用远区场工作(如MT法等),只要改变频率就能改变探测深度。复电阻率(CR)法主要为近区场,只有改变极距才能改变探测深度,是一种几何测深。由于近区场电磁谱(SEM)的强度大,并在频带上与SIP谱有部分重叠,在SIP法发展的前期一直把它作为干扰进行消除,SEM谱中包含的地下导电性变化的信息未被利用。通过对SEM谱进行的系统研究与开发,引入了多个重要的SEM参数———电磁电阻率ρω、相位极值比、视电磁充电率比,解决了近区场SEM谱的应用问题,并在实践中获得了较好的地质效果。
正演计算研究和实际应用表明:SEM参数具有明确的物理意义和量纲,与地下导电性结构的量值有关,对导电性目标体的异常响应灵敏度比视几何电阻率(ρS)高2~4倍,几何分辨率小于四分之一偶极距。由于近场区电磁参数主要与极距有关,用它们构成的拟断面是几何测深断面,便于与SIP参数所构成的几何测深断面对比;SEM参数的探测深度趋近于r/2,且受地表导电性不均匀的影响很小。
一、含义不同
mean表示都是平均数。
SEM是standard error of mean是平均数的抽样误差,反应平均数的抽样准确性。
SD全称standard deviation标准差,又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。
二、用法不同
SEM计估计值的准确性无法度量,但可以用统计方法来测量。
测试的误差来源包括系统误差和采样误差,这些误差很容易克服,采样误差是由许多无法控制的内部和外部因素引起的,这些因素都是偶然的,即使在测试中非常小心也很难消除,但可以通过增加重复次数来减少。
小样本(n≤30)取平均值±标准差,大样本(n>30)取平均值±标准差。
三、类型不同
标准差是方差的算术平方根。标准差可以反映数据集的离散程度。如果平均值相同,则标准差可能不相同。
标准误差是用样品的标准偏差除以样品容量的平方根来计算的,标准误差受样本量影响较大,样本量越大,标准误差越小,抽样误差越小,说明样本能够更好地代表种群。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)