超滤膜孔径如何测定

超滤膜孔径如何测定,第1张

滤膜孔径的测定微孔滤膜的孔径分离效率是关键所在,所以评价滤膜孔径甚为重要。

目前大致采用以下方法:

一、直接测量法

1.直接法测膜孔径

(1)电子显微镜

扫描电镜(SEM)和透射电镜(TEM)电子显微镜表征膜的孔径、孔径分布及膜的形态结构。

制样至关重要。湿膜样品要经过脱水、蒸镀、复型等处理。

逐级脱水法:膜样品用5%饿酸固定,然后在提取器中用CCl4或乙醇逐级脱水,再用环氧树脂包埋固化,最后用超薄切片机切成薄片。适用透射电子显微镜的观察。

低温冷冻脱水法:膜样品放在液氮或其他低温介质中冷冻,使膜样品中的水急速冷冻为细小的结晶,然后在低温(至少低于-60°C)和低真空下,使冷冻的结晶逐级升华。这样制备的膜样品不收缩,经镀金或复型,可用电子显微镜观测。

微滤膜的孔径为0.05-10m,扫描电镜可分辨。

超滤膜的孔径为1nm-30mm,扫描电镜的分辨率低于5-10nmnm,所以采用扫描电镜观测超滤膜的结构是困难的。

透射电镜的分辨率比扫描电镜要高得多,约为3-4A正确制样,高分辨率的透射电镜可以观测超滤膜的表面细微结构。

环境扫描电子显微镜(ESEM),克服了常规SEM的局限性。使湿的、油性的、脏的和不导电的样品不经处理就可直接上机观测。

二、间接测量法

间接法是利用与孔径有关的物理现象,通过实验测出相应的物理参数,在假设孔径为均匀直通圆孔的假设条件下,计算得到膜的等效孔径,主要方法有泡点压力法、压汞法、氮气吸附法、液液置换法、气体渗透法、截留分子量法、悬浮液过滤法。

泡点法:

原理

当气体通过充满了液体的膜孔时,若气体的压力与膜孔内液体的界面张力相等,则孔内的液体逸出,即得泡点压力与膜的孔径之间关系:

泡点压力所对应膜的最大孔径。实测时,膜应被液体完全润湿,否则将带来误差。

亲水性膜采用水为润湿液体;疏水性膜采用醇为润湿液体。

测定步骤

a将样品平行于液面浸入蒸馏水中,使其完全湿润b将滤膜置于测试池上,压上光滑的多孔板c在多孔板上加入3-5mm深的水d开通气源,使压力缓慢上升,当滤膜表面出现第一个气泡并连续出泡时的气体压力值,带入公式可求出样品最大孔径值。

e气泡出现最多时的压力值,带入公式可求出样品最小孔径。

f由最大孔径与最小孔径即可算出平均孔径。

(1)电镜法比较直观,但属破坏性检测,也只能得到局部信息

(2)泡压法(又称气体渗透法)只局限于测定膜孔中的最大孔径,用于小孔径超滤膜的测定时所需压力远高于膜的使用压力,故一般认为只适用于微滤膜的测定。

七、 什么是孔径

正如我们已经知道的,镜头的速度是指镜头传送光线的能力。如果我们不希望镜头接纳最大的光量,就需要一种减少通过镜头光量的方法。我们是利用改变镜头孔径大小的方法达到这一目的的。孔径就是由可变光圈(叶片组)在镜头中央产生的圆孔如下图所示

光圈好比是水龙头。如果把它开大,就能有大量的光线进入;如果把它关小,就只会进入较少的光线。

什么是f制光圈

镜头孔径的大小可以用一个诸如f/1.2、f/8、f/16…的数字来表示,称之为f值。f值越小,镜头的圆孔越大。因此,假设某只镜头设置为f/2时,看上去可能如图2.23x所示,而同一只镜头设置为f/16时,则可能会如右图所示。

观察你的照相机。在镜头上会找到一系列f值设定值,称作f制光圈。如果你的镜头上具有这些f值光圈数字,请按从小到大的顺序将它们写在下面的横线上。(如果你的镜头上面没有这些f制光圈数字,也没必要烦恼,我们不过是在了解和掌握这一概念)。

f /-f /-f /-f /-f /-f /-f /-f /-

f制光圈之间的关系是什么

这些特定的f值光圈数字具有什么意义呢?这是一组"不可思义"的数字,认识和运用它们可以更容易地控制曝光,其意义如下:开大一挡光圈,进入照相机的光量会加倍;缩小一挡光圈,光量将减半。

这个概念就这么简单,但却非常重要。

f /4孔径所接纳的光线是f/5.6的两倍,f/5.6接纳的光线是f/8的两倍,f/8接纳的光线又是f/11的两倍,依此类推。

f值的完整序列如下:

f/1,f/1.4, f/2, f/ 2.8,f/ 4,f/ 5.6,f/8,f/ 11,f/16, f/22,f/32, f/ 44,f/64。

与你刚才写下的序列对照一下,或许只是上述序列当中的一部分,并可能与下面的序列非常相像,例如:f/ 2.8,f/ 4,f/ 5.6,f/8,f/ 11,f/16,在这个例子中,这只镜头应该叫做f/ 2.8,镜头因为这是它的最大孔径。

摄影者都应该熟知自己镜头的这些光圈。不知道你现在是否领会了为什么f/8所接纳的光量是f/16的4倍?或者为什么f/ 11接纳的光量是f/ 4的f/8?如果还未领会的话,请在继续向下阅读之前把这五节再读一遍。

认识并理解从f/1至f/64的序列会成为今后工作中颇有价值的一件工具。如果你现在还不是非常熟悉的话,请立即仔细研究并牢牢记住它。了解这些光圈数字之间的变化规律有一个小诀窍:每个数字都是向前数两级所对应的那个数字的两倍,即

1… 2… 4… 8… 16… 32… 64… 1.4… 2.8… 5.6… 11… 22… 44

考察上页的一系列照片,就会知道改变孔径是怎样改变进入照相机的光量,以及是怎样影响最终照片的。所有这些照片都是在相同的条件下使用相同的胶片拍摄的,即照明条件保持不变,快门速度保持不变,唯一变化的就是孔径。

````

应该是景深吧``

焦深计算公式

L= ±[(r/M)-d]/2α 其中:

L: 焦深

r: 显像管最小分辨距离

M:放大倍数

d:入射电子束直径

2α:物镜孔径角。

从上面的式子可以看出影响焦深的因素,其中隐含了工作距离w。物镜孔径角与工作距离和入射电子束直径有关。由于r(显像管的分辨率)和2α都是未知数,实际上不能计算。焦深也只是个人的视觉感受,还是直观的测量一下为好。

又查了资料``显像管最小分辨距离为0.22mm-0.3mm, 孔径角的典型数值为10-2—10-3rad.利用公式L= ±[(r/M)-d]/2α可以计算出在有效放大倍率下的焦深数据。设d=3纳米,孔径角2α=10-2 rad,r=0.3mm。计算焦深如下:

1000倍下为59.4微米。5000倍下为11.4微米。10000倍下为5.4微米。超过100000倍已经超过了有效放大倍率。不能计算。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/247252.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-13
下一篇2023-04-13

发表评论

登录后才能评论

评论列表(0条)

    保存