目前有很多软件都可以非常便利地实现验证性因子分析,本文将基于SPSSAU系统进行说明。
因子分析可分为两种类型:探索性因子分析(EFA)和验证性因子分析(CFA)。
探索性因子分析,主要用于浓缩测量项,将所有题项浓缩提取成几个概括性因子,达到减少分析次数,减少重复信息的目的。
验证性因子分析与探索性因子分析相似,两者区别只在于探索性因子分析(EFA)用于探索因子与测量项之间的对应关系,验证性因子分析(CFA)用于验证结果与理论预期是否一致。
在实际研究中,验证性因子分析常会与结构方程模型、路径分析等方法联系到一起,对于不熟悉概念的研究人员容易搞混这些方法,下表对这几种方法进行简单说明:
探索性因子分析: 验证因子与分析项的对应关系,检验量表效度,非经典量表通常用探索性因子分析。
验证性因子分析: 验证因子与分析项的对应关系,检验量表效度,成熟量表通常用验证性因子分析。确认测量关系后,后续可进行路径分析/线性回归分析研究具体的影响关系。
路径分析: 用于研究多个自变量与多个因变量影响关系;如果因变量只有一个,可以使用线性回归分析。
结构方程模型SEM : 包括测量关系和影响关系。如果仅包括影响关系,此时称作路径分析(Path analysis,有时也称通径分析)。通常需要进行探索性因子分析和验证性因子分析,均保证测量关系无误之后,再进行结构方程模型构建。
从分析思路上看,建议先用探索性因子分析EFA构建模型,确定存在几个因子及各分析项与因子的对应关系,再用验证性因子分析CFA加以检验。
(1)模型设定
首先需要确定因子数及对应分析题项,顺序放入分析框内。
(2)模型拟合
通过因子载荷系数表格可以展示因子(潜变量)与分析项(显变量)之间的关系情况。如果因子与测量项间的对应关系出现严重偏差,或者因子载荷系数值过低,则需要删除掉该测量项。
分析时主要关注P值及标准载荷系数,建议结合SPSSAU给出的“分析建议”进行分析。
模型拟合指标用于整体模型拟合效度情况分析。
常用的拟合值及其判断标准,都展示在上表中,实际输出值在标准范围内及说明模型拟合程度较好。模型拟合指标非常多,通常下很难保证所有指标均达标,只要多数指标达标或接近标准值即可。
*常用指标包括卡方自由度比,GFI,RMSEA,RMR,CFI,NFI和NNFI。
(3)模型修正
根据模型拟合指标情况,评价模型的优劣,如果模型拟合情况不佳,则需要进一步修正模型。
MI指标越大说明该项与其他因子的相关性越强,MI过大时会干扰模型需要进行修正或剔除该项。
模型构建过程需要重复多次,以找到最优模型。同时SPSSAU会自动生成模型结果图。
(4)模型分析
在完成模型构建后,即可使用模型进行分析。验证性因子分析主要有三个方面的功能,分别是聚合效度、区分效度、共同方法偏差。
聚合效度
聚合效度,也叫做收敛效度。AVE和CR是用于判断聚合效度的常用指标,AVE>0.5,并且CR>0.7,则说明具有良好的聚合效度。如果AVE或CR值较低,可考虑移除某因子后重新分析聚合效度。
上图为SPSSAU输出的AVE、CR值指标表格,可以根据此表格进行查看。
区分效度
区分效度,常用的做法是将AVE根号值与‘相关系数值’进行对比,SPSSAU也会输出相应结果。
如果每个因子的AVE根号值均大于“该因子与其它因子的相关系数最大值”,说明具有良好的区分效度。
共同方法偏差
共同方法偏差,SPSSAU提供两种方法检验,一种是探索性因子分析(也称作Harman单因子检验方法),做法是将所有变量进行探索性因子分析,如果只得出一个因子或者第一个因子的解释力(方差解释率)特别大,则判定存在共同方法偏差。
另一种是验证性因子分析,所有变量全部放在一个因子里面进行分析,如果测量出来显示模型的拟合指标无法达标,模型拟合不佳,说明所有的测量项并不应该同属于一个因子,也就说明数据无共同方法偏差问题。
验证性因子分析需要较大的样本量,通常建议样本量至少为测量项(量表题)的5倍以上,最好10倍以上,且一般情况下至少需要200个样本。
一个因子对应的测量项最好在5~8个之间,便于后续删除掉不合理测量项。
绝大多数情况下均为一阶验证性因子分析。如果说验证性因子分析时为二阶模型,此时参数处选中‘二阶’即可。
一般来说,使用验证性因子分析需要有一定的理论基础支持,如果拟合指标不能达标,最好按照分析思路:探索性因子分析→验证性因子分析,进行分析。
以及对于不熟悉的步骤,建议大家阅读SPSSAU帮助手册的相关说明以及SPSSAU的教学视频。
验证性因子分析视频教学: https://www.bilibili.com/video/av69372013
上一篇文章中,初步介绍了验证性因子分析的功能及应用场景。下面通过一个实例来具体了解一下,验证性因子分析的操作步骤以及过程中需要注意的内容。当前有一份215份的研究量表数据,共由四个因子表示,第一个因子共5项,分别是A1~A5;第二项因子共5项,分别是B1~B5;第三个因子共4项,分别是C1~C4;第4个因子共6项,分别是D1~D6。现希望验证此量表的 聚合效度 和 区分效度 ,并且希望进行 共同方法偏差分析 。
验证性因子分析的步骤大致可分为四步,分别是:模型构建、删除不合理测量项、模型MI指标修正和模型分析。
(1)模型构建
即将因子与测量项对应关系放置规范;在进行CFA分析前一般需要进行EFA,清理掉对应关系出现严重偏差的测量项
(2)删除不合理测量项
如果因子与测量项间的对应关系出现严重偏差,此时可考虑删除某测量项;也或者某测量项与因子间的载荷系数值过低(比如小于0.5),说明该测量项与因子间关系较弱,需要删除掉该测量项
(3)模型MI指标修正
如果说模型拟合指标不佳,可考虑进行模型MI指标修正【SPSSAU默认提供MI大于20,MI大于10,MI大于5,和MI大于3共四种模型修正方式】
(4)最终模型分析
本例子中的量表共分为四个因子,暂不进行模型MI修正,放置如下:
SPSSAU共输出6个表格,各表格对应解释说明如下:
从上表可知,本次针对共4个因子,以及20个分析项进行验证性因子分析(CFA)分析。本次分析有效样本量为215,超出分析项数量的10倍,样本量适中。
CFA分析建议样本量至少为测量项(量表题)的5倍以上,最好10倍以上,且一般情况下至少需要200个样本。一个因子对应的测量项最好在5~8个之间,便于后续删除掉不合理测量项。
因子载荷系数表格展示 因子和测量项之间的关联关系 ,通常使用标准载荷系数值表示因子与分析项间的相关关系。分析时主要看标准载荷系数值和P值。
如果呈现出显著性,且标准载荷系数值大于0.70,则说明有着较强的相关关系。反之,如果没有呈现出显著性,也或者标准载荷系数值较低(比如低于0.4),则说明该分析项与因子间相关关系较弱。
上表格显示,B1与Factor2之间的因子载荷系数值为0.562 <0.7,说明对应关系较弱,可考虑将此项从Factor2中移除出去。从整体上看,各个测量项全部均呈现出0.001水平的显著性(P<0.001),而且标准化载荷系数值均大于0.7(除B1外),因而说明整体上看,因子与测量项之间有着良好的对应关系,聚合效度较好。
此表格主要查看指标的 聚合效度 和区分效度 情况,输出指标包括AVE和CR值。通常AVE值>0.5,CR值>0.7,说明数据聚合效度较好。
从上格可知:本研究涉及的4个因子(SPSSAU默认给定名字为Factor 1, Factor 2, Factor 3, Factor 4),它们的AVE值全部均大于0.5,而且CR值全部均大于0.7,因而说明本次测量量表数据具有优秀的聚合效度。
此表格展示 模型拟合指标 ,共分为常用指标和其它指标。表中提供各指标相应的建议判断标准,可直接对比判断标准值。一些其它指标通常使用较少,研究人员可结合实际情况进行选择。如果模型拟合不好需要,需要根据相关专业知识和模型修正指标对模型进行修正。
上表来看:卡方自由度值为3.389,大于3,而且GFI小于0.9,RMSEA为0.105接近于0.1这一标准,RMR值为0.091不在标准范围内。综合来看,模型构建欠佳,需要进行模型修正。比如这里将MI>10作为修正标准然后重新进行模型拟合,得到结果如下
上表格展示 因子与测量项的对应关系MI值 ,因子与其下属测量项的关系可通过因子载荷系数表格进行查看。MI值并不固定标准大小,一般情况下,该值如果大于20则说明关联性很强。
从上表格可以看到,C2与Factor2,Factor4这两个因子间的MI指标均大于15,说明C2与Factor2,Factor4之间可能有着较强的关联性;同时,D5与Factor3之间的MI值为18.121,说明二者有较强的关联性。
综合可知:可考虑将C2,D6这两个指标进行删除,同时上述因子载荷表格分析还发现B1也可以进行删除。因而将此三项进行删除后可再次进行模型(限于篇幅限制,SPSSAU并不继续进行分析)。
上表格展示因子与因子之间的关联性,可通过标准系数进行分析。从上表可知,在进行因子协方差表格分析时,本研究共4个因子,他们两两之间的标准系数值均介于0.6~0.85之间,说明因子之间具有较强的关联性。
聚合效度通常是针对 AVE,CR,因子载荷系数 这三个指标进行分析,并且均是在模型最终确认后的指标进行分析。
分析结果表明:本研究量表数据具有优秀的聚合效度
区分效度的测量是使用 AVE的平方根值 ,然后与4个因子的相关系数进行对比。
如果AVE平方根值大于“该因子与其它因子间的相关系数”,此时说明具有良好的区分效度。
区分效度首先需要进行相关分析(以及每个因子对应多项,需要使用‘生成变量’功能将其概括成一个整体后再进行两两相关分析)。如下:
常见的区分效度分析时,会将上表格中斜对角线的1,换成AVE值的平方根,然后再进行对比分析。最终如下表格式:
上图可知,因子1的AVE根号值为0.843,大于因子1与另外3个因子之间的相关系数值(最大为0.777);因子2的AVE根号值为0.84,大于因子2与另外3个因子之间的相关系数值(最大为0.753);类似地,因子3的AVE根号值,因子4的AVE根号值均大于它们与其它因子的相关系数值。因而说明研究量表数据的区分效度良好。
特别提示:
常见的区分效度分析是将AVE根号值与‘相关系数值’进行对比;有时候区分效度的验证方法为:“比较多个CFA模型进行分析说明”,建议研究人员以参考文献为准;
区分效度进行时,需要先进行相关分析,以及取AVE均方根,然后将手工表格合并处理好后进行分析说明。
共同方法偏差(CMV)常见有两种验证方式,一种是使用探索性因子分析EFA方法进行检验 (也称作Harman单因子检验方法),即查看把所有量表项进行探索性因子分析EFA时,如果只得出一个因子或者第一个因子的解释力(方差解释率)特别大,通常以50%为界,此时可判定存在同源方差(共同方法偏差),反之说明没有共同方法偏差问题。
如果是使用CFA进行验证;则将所有的测量项(即所有因子对应的测量量表题项)放在一个因子里面,然后进行分析,如果测量出来显示模型的拟合指标,比如卡方自由度比,RMSEA,RMR,CFI等无法达标,则说明模型拟合不佳,即说明所有的测量项并不应该同属于一个因子(放在一起时模型不好),因而说明数据通过共同方法偏差CMV检验,数据无共同方法偏差问题。
本次共有4个因子对应20个测量项,将此20个测量项全部放在一个因子里面进行CFA分析并且得到模型拟合指标,如下图:
上图显示卡方自由度值为11.137,明显高于标准(>3),并且GFI,CFI,NFI,NNFI这四个指标值全部均低于0.7,明显偏差标准值(大于0.9),RMSEA和RMR值均大于0.15,也严重偏差标准值。其它指标比如AGFI,IFI,PGFI,PNFI等也均低于0.7,严重偏差大于0.9这一标准,因而说明模型拟合质量非常糟糕,也即说明不能本次研究量表数据无法聚焦成一个因子,即说明无共同方法偏差问题。
特别提示:
上述为两种常见的共同方法偏差验证方法,还有其它验证方法,建议研究人员以参考文献为准;
研究人员需要在事前注意共同方法偏差问题,而不能等到事后发现共同方法偏差才能处理。
登录 SPSSAU官网 体验在线数据分析
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)