发现建立结果方程模型并不复杂,然而我用自己的数据尝试的时候却失败了。
总结一下
1. 结构方程模型通常是用来解释一个固定指标,如果实验设计中这个有这个指标且设计的理想,会有利于SEM的构建。
2. 处理变量要独立,这次我的数据有一些线性关系,系统会给出提示。
3. 数据量不能太小。
4. 什么时候用Bootstrap还不太清楚。
希望后面的实验中可以再进行SEM的构建尝试。
结构方程模型(SEM, Structural Equation Modeling)是建立在回归模型(Regression Models)的基础上,针对潜变量(Latent Variables)的统计方法。&ltimg src="https://pic1.zhimg.com/v2-9097acc14cb5f4a901d4e2d1cf883030_b.png" data-rawwidth="308" data-rawheight="260" class="content_image" width="308"&gtf为latent variable, 例如智力、自尊等,在该SEM模型中为predictor。y1,y2,y3为observed variables, 即可直接测量得到的变量,在该SEM模型中为indicators。λ1-3为factor loadings,ε为residual error。
f为latent variable, 例如智力、自尊等,在该SEM模型中为predictor。y1,y2,y3为observed variables, 即可直接测量得到的变量,在该SEM模型中为indicators。λ1-3为factor loadings,ε为residual error。
先前提到SEM是建立在regression model基础上的,该模型可写为如下方程:
y1 = λ1*f + ε1
y2 = λ2*f + ε2
y3 = λ3*f + ε3
即可看到与regression model的联系。
SEM较为广泛应用的是方差/协方差估计法。即可由上述方程写出关于y1,y2,y3的方差/协方差矩阵:(σ为f的variance)
&ltimg src="https://pic3.zhimg.com/v2-4d1ae9e59cf5987bc5ad78ac07b42c7a_b.png" data-rawwidth="453" data-rawheight="93" class="origin_image zh-lightbox-thumb" width="453" data-original="https://pic3.zhimg.com/v2-4d1ae9e59cf5987bc5ad78ac07b42c7a_r.png"&gt而后计算机根据实际矩阵,对factor loadings等parameters进行估计并输出估计矩阵,与实际矩阵差异最小(最理想)时,即输出结果,得到各估计参数和拟合指数。
而后计算机根据实际矩阵,对factor loadings等parameters进行估计并输出估计矩阵,与实际矩阵差异最小(最理想)时,即输出结果,得到各估计参数和拟合指数。
应用较多的模型/方法:MIMIC, multiple group models(比较组间差异), latent growth modeling(比较纵向差异)等。
应用广泛的软件:
1、Mplus。优点:编程简单,结果全面。缺点:收费,贵。学生版是300$。
2、Amos。优点:傻瓜,画图拖数据即可。缺点:模型稍一复杂就很费时。
3、R。下个package即可。优点:兼容性、专业性强。缺点:用的人少,不利于伸手党。
4、LISREL。优点:易入门。缺点:需输入各矩阵,略过时。
其他还有一些软件,不了解。
SEM入门不久,以上为个人理解,求探讨求轻喷。么么哒
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)