结构关系方程
模型(SEM)属于验证式的协方差
结构模型分析,完整的协方差结构模型包含两个次模型:①测量模型(如图),潜
变量(即不可自我描述的因变量)被显性指标(即观察变量)所测量或概念化,测量模型也可以复杂一些,比如二阶测量模型,;②结构模型(如图),潜变量之间的假设关系,以及无法解释的变异量部分,以确认假设的潜变量之间的关系以及潜变量与显性指标的一致性程度。当然,复杂度更高的结构模型比比皆是,这就太考验理论能力、概念化能力、量表设计能力和SEM模型控制能力了。sem 结构方程模型是社会科学研究中的一个非常好的方法。该方法在20世纪80年代就已经成熟,可惜国内了解的人并不多。“在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。 结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。
区别在于广义化线性模型中的联系函数的形式。 logit 采用对数形式。应用上,普通logit的响应变量是二元的。 logit的响应变量可以是多元的。统计软件 spss中: logit属于对数线性模型,分析结果主要为因变量和自变量之间的关系,可以细化到各分类因变量与分类自变量之间。sem属于回归分析,分析结果为估计出自变量参数。
评论列表(0条)