横向扩展指的是增加多台数据库服务器,将数据分布在多台服务器上。这种扩展方式需要解决如何在多台服务器之间进行数据同步、如何确保数据的一致性、如何处理负载均衡等问题。横向扩展能够提高数据库的性能和可扩展性,但也带来了更多的复杂性。
你有一台API服务器,每天几百万次请求,吃不消了。现在要提升性能:
横向扩展:多增加几台API服务器,一起服务。
纵向扩展:把API服务器换成性能更好的机器。
Scale horizontally vs. vertically
Methods of adding more resources for a particular application fall into two broad categories
Scale horizontally (scale out)
To scale horizontally (or scale out) means to add more nodes to a system, such as adding a new computer to a distributed software application. An example might be scaling out from one Web server system to three.
As computer prices drop and performance continues to increase, low cost "commodity" systems can be used for high performance computing applications such as seismic analysis and biotechnology workloads that could in the past only be handled by supercomputers. Hundreds of small computers may be configured in a cluster to obtain aggregate computing power that often exceeds that of single traditional RISC processor based scientific computers. This model has further been fueled by the availability of high performance interconnects such asMyrinet and InfiniBand technologies. It has also led to demand for features such as remote maintenance and batch processing management previously not available for "commodity" systems.
The scale-out model has created an increased demand for shared data storage with very high I/O performance, especially where processing of large amounts of data is required, such as in seismic analysis. This has fueled the development of new storage technologies such as object storage devices.
Scale out solutions for database servers generally seek to move toward a shared nothing architecture going down the path blazed by Google of sharding.
Scale vertically (scale up)
To scale vertically (or scale up) means to add resources to a single node in a system, typically involving the addition of CPUs or memory to a single computer. Such vertical scaling of existing systems also enables them to use virtualization technology more effectively, as it provides more resources for the hosted set of operating system and application modules to share.
Taking advantage of such resources can also be called "scaling up", such as expanding the number of Apachedaemon processes currently running.
一般人们会选择纵向扩展(scale up)SQL Server数据库,而非横向扩展(scale out)。纵向扩展很容易:增加硬件、处理能力、内存、磁盘和提高网络速度。其原理就是仍然在一台服务器上运行数据库,但是增加了服务器的处理能力和资源。这种方法很昂贵,但是非常简单直接。采用云技术
有时候,最简单的方法就是将问题交由其他人处理。微软的Windows Azure云服务包含一个基于云的SQL Server版本SQL Azure.这在技术上并非真正意义的横向扩展,因为它是一种无限纵向扩展方法。所以,转移到Azure并不需要对您的应用程序进行大改动。实际上,您只需要将应用程序迁移到SQL Azure,然后支付存储、处理和数据传输费用。这些都是收费服务,但是您不需要再担心扩展问题。
复制
SQL Server原生复制是一种支持横向扩展的解决方案,与数据库的创建和使用方式有关。您只需要在多台服务器上复制多个数据库副本,然后将不同的用户指向各台服务器。这种方法通常最适合支持地理位置分散的用户,如亚洲办公室的用户使用服务器1,而北美办公室的用户则使用服务器2.每一台服务器都拥有完整的数据副本,并且会复制伙伴服务器的所有修改。
这种方法不支持自动负载均衡,并且最适合用在用户固定只使用一部分数据的情况。换而言之,如果亚洲用户只需要编辑与他们办公室相关的数据--例如,主要是亚洲客户的信息,那么复制能够保证其他数据库副本也包含这些记录的副本。如果所有用户都需要编辑完整的数据集,那么复制就变得有一些复杂,因为SQL Server必须在支持用户的同时,编辑位于不同服务器的同一个数据。
SQL Server的合并复制能够处理这种冲突,但是您必须进行一些自定义合并编程,这意味着您的开发人员必须开发一些算法,确定用户并发访问数据时谁获取编辑权限。客户应用程序也需要增加编程;使它们不仅向数据库提交数据修改,也要循环检查这些修改是否被其他并发用户重写。用户也需要重新培训,因为客户端应用程序可能会提示:"您正在编程的数据已经发生变化。您需要重新检查,确定您的编辑是否仍然有效。"
联合数据库
另一个重要的横向扩展方法是联合。通过这种方法,您可以将数据库划分到多台服务器上。垂直分割将同一个表的不同行保存到不同的服务器上。同时,地理分区是最常用的方法:将所有亚洲数据记录保存在一台服务器上,而所有欧洲数据则保存在另一台服务器上。这种方法不同于整体复制:每一个位置的服务器都不具备完整的数据库,而只拥有该位置的数据。通过实现一种SQL Server分布式分区视图而形成完整的表,用户就可以浏览一个"联合"或组合的数据视图。水平分割则将表的字段保存在不同的服务器上,因此各台服务器一起协作构成组合的表。
这些数据库的创建并不简单,其中涉及一种整体操作。您需要掌握关于数据访问和使用的详细信息,才能够实现正确的部署。此外,您还需要一位SQL Server数据库架构师,他应该全面理解这些技术,分析您的业务情况,并且能够正确地创建这些组件。
在一些情况中,实现这种横向扩展对客户端应用程序的改动很小。对于本身在设计上大量使用视图和存储过程进行数据访问的应用程序,更是如此。因为这些元素只是是在后台抽象,在客户端上不会发生变化。但是,这些应用程序并不常见;通常,实现横向扩展都需要修改客户端程序,使客户端与后台结构分离。
横向扩展并不简单
毫无疑问,实现SQL Server横向扩展非常复杂--这也是Azure等云数据库系统流行的原因之一。此外,有一些第三方供应商能够帮助实现横向扩展技术,而不需要完全依赖SQL Server的原生特性。您需要自己下功夫了解这些方法,理解数据访问和使用方法,这样才能够选择最符合您要求的方法。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)