蔡司扫描电镜的数据区如何调出放大倍数

蔡司扫描电镜的数据区如何调出放大倍数,第1张

Mini-SEM是具有高清度,高放大率,高性能的台式扫描电子显微镜。

现代的电子显微镜一般有一个控制台,集成有放大旋钮(包括粗调和微调),一定范围内可以连续放大,另外有位移摇杆、亮度、对比度旋钮等等,当然也可以通过电脑软件的放大缩小按钮来调节倍数。

Carl Zeiss 卡尔蔡司 镜头 产地差异 AEG AEJ MMG MMJ

转自 leelinfeng的博客

但凡是发烧Contax

蔡司镜头的朋友都会碰到,同样的规格的镜头有AEG MMG AEJ

MMJ等不同的型号。到底选择哪一款,实在是个令人头痛的难题。AE镜和MM镜比较好理解,AE镜只能实现光圈优先,而MM即所谓的Multi-

Mode,除了光圈优先,还可以使用速度优先和自动程序功能。G代表德国制造,J当然是代表日本制造了。那么在具体的成像方面G镜和J镜会有不同吗?虽然官方声称二者没有差别,但是在众多的发烧友当中却对这种说法却是仁者见仁智者见智。德制和日制的区别到底在哪里?我想是不是可以从以下几个方面总结总结

1 镜头的镀膜

镜头到手,首先注意到的是德版和日版镀膜区别,这也是被讨论的最多的一个话题。一般而言德版的镀膜大都呈深紫色(亦有虎玻,绿,蓝等色彩),而与之相比日版的镜头,尤其是广角镜头绿色的镀膜比较常见。不同规格的镜头表现出来不同的镀膜色彩,相同规格但不同批次的镜头仍然表现出不同的镀膜色彩。蔡司公司T*镀膜的配方频繁的变来变去是难以令人想象的,所以我宁愿相信镜片色彩的不同来自于镜片玻璃材质的不同。另外一种说法是,镀膜配方虽然相同,但是德版的T*镀膜比日版的微厚。要做测量很简单,相信不必动用比如AFM,SEM等昂贵设备,一台简单的表面形状测定仪就行了。不过为了这个去刮伤两只镜头似乎有些得不偿失。

2 镜片

传说以序列号58开头的镜头使用的玻璃和contarex的玻璃一样。contaflex的镜头?玩老头的发烧友一定非常熟悉了。那个

P85T*1.4,就凭其价格比现在contax的纪念镜P85/1.2还要贵,其实力可想而知(数量稀少也是原因之一)。玻璃对镜头的影响巨大。这一点上德制镜头尤其讲究。日制镜头,一般是先设计再制作。然而玻璃的实际光学参数和设计值是有偏差的,那么这种偏差对成像的影响也就不可避免了。然而德制镜头,尤其是到Apo一级的,比如哈苏的300/2.8,Planar

55/1.2等,则是首先购进玻璃,测试参数,再根据参数进行镜头设计。这种高成本的运作方式虽然保证了镜头的质量,但高价和限产也是不可避免的。

从玻璃的炼制角度来讲,日本多湿,德国干燥,那么在炼制过程中溶解在玻璃中的水分当然是日本玻璃较多。显然从生产环境上来讲,德国产的玻璃在光学性能较为占优。再有,环保玻璃问题。早期的玻璃含铅,含铊等镧系的过渡金属,对成像有利(比如,氧化铅可提高光学折射率和色散,氧化砷可澄清气泡功能等)。保护环境,减轻污染,我是举双手双脚赞成的,但作为一名摄影发烧友,为失去了一批性能优异的光学玻璃而不得不令人扼腕。近期的德国,日本都采用环保玻璃(比如哈苏德CFI系列镜头)。虽然通过新的研发,也取得了不少令人注目的成绩,但是,个人认为非环保玻璃的特性至今仍然是无法代替的。想一想当年,蔡司仅仅用5枚镜片就打造出了P135/2,这是何等的自信和实力!相同规格的蔡司,德版较日版为早,要想拥有非环保玻璃打造的镜头,那么寻找德头就不可避免了。另外早期德制镜片侧面均未作消光处理,容易残生迷走光线,在逆光是比较容易吃光,从而降低反差。一说,德镜偏黄也出于此。日镜在此方面作了改进,在抗逆光这一条上日镜占优。

3 光圈结构

这个已经是被谈老了的话题。G版镜头一般是锯齿形叶片,光圈收1-2档的时候,背后有点光源存在的情况下光斑呈锯齿状,光圈收到1-2档以上时锯齿消失。而

MMJ版的则为标准的8角形结构,从背景的虚化来讲无疑是MMJ版更符合现代人的口味。令人不解的是,早期contaflex的镜头光圈非常的漂亮,而且并非锯齿形状。蔡司为何改弦更张,个中缘由耐人寻味。

4 镜桶构造

虽然这个话题鲜有人讨论,但是,德国和日本的生产观念在这里却得到了充分的表现。纵观蔡司镜头,不难发现其中的端倪。一些镜头经过从G到J的演变,在外形上已经发生了不小的变化。比如135mmF2.8,

180mmF2.8, 200mmF3.5,

300mmF4四款镜头都从胖胖镜廋身成功,都变得小巧纤细,方便携带。另外有一些镜头的变化却不是那么明显,要找出它们的区别还是要下一番苦功不可。比如从S-planar

60mm/2.8到Makro-planar

60mm/2.8就至少经历了3个版本。第一版的SP60是黑屁股,而且附带有极为优秀的消光筒,第二版还是黑屁股,但是为了节约成本,消光筒被取消;第三版变名Makro-Planar,白屁股,而且尾部的一组镜片被完全模块化。这也就是说,日产的MP不可能像SP那样对镜头的参数作精细调节(这种现象在其他镜头上也能看得到)。

德镜给人的感觉是在维持一定的品质的基础上,上下浮动较大。使用德镜,有的时候要一比,二比甚至三比,四比才能碰到真神仙。而日镜成像比较整齐划一,虽然呵杰出的德镜相比稍逊一筹,但是仍然保持相当高的水准。从上面的例子不难看出,德镜部件多,装配繁琐,容易出现误差,但是通过耐心调制可以得到非常好的个体。而日镜,通过大规模的模块化,降低成本,提高了效率,品质也得到一定的保障。日本这一招,虽然有偷工减料之嫌,但也是大工业化下的必然产物。其实作为蔡司的粉丝还是应该由衷地感谢这一点。正是由于日产化以后,才大大降低了成本,使蔡司放下高贵的身价,寻常百姓也能一亲芳泽。

4 镜桶构造

虽然这个话题鲜有人讨论,但是,德国和日本的生产观念在这里却得到了充分的表现。纵观蔡司镜头,不难发现其中的端倪。一些镜头经过从G到J的演变,在外形上已经发生了不小的变化。比如135mmF2.8,

180mmF2.8, 200mmF3.5,

300mmF4四款镜头都从胖胖镜廋身成功,都变得小巧纤细,方便携带。另外有一些镜头的变化却不是那么明显,要找出它们的区别还是要下一番苦功不可。比如从S-planar

60mm/2.8到Makro-planar

60mm/2.8就至少经历了3个版本。第一版的SP60是黑屁股,而且附带有极为优秀的消光筒,第二版还是黑屁股,但是为了节约成本,消光筒被取消;第三版变名Makro-Planar,白屁股,而且尾部的一组镜片被完全模块化。这也就是说,日产的MP不可能像SP那样对镜头的参数作精细调节(这种现象在其他镜头上也能看得到)。

德镜给人的感觉是在维持一定的品质的基础上,上下浮动较大。使用德镜,有的时候要一比,二比甚至三比,四比才能碰到真神仙。而日镜成像比较整齐划一,虽然呵杰出的德镜相比稍逊一筹,但是仍然保持相当高的水准。从上面的例子不难看出,德镜部件多,装配繁琐,容易出现误差,但是通过耐心调制可以得到非常好的个体。而日镜,通过大规模的模块化,降低成本,提高了效率,品质也得到一定的保障。日本这一招,虽然有偷工减料之嫌,但也是大工业化下的必然产物。其实作为蔡司的粉丝还是应该由衷地感谢这一点。正是由于日产化以后,才大大降低了成本,使蔡司放下高贵的身价,寻常百姓也能一亲芳泽。

聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。

以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:

1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。 

2.电子束 : 成像和实时观察

3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)

4.纳米机械手:  转移样品 

5.EDS: 成分定量和分布

6.EBSD : 微区晶向及晶粒分布

7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min

由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:

图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。

FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:

1)在样品感兴趣位置沉积pt保护层

2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片

3)对薄片进行U-cut,将薄片底部和一侧完全切断

4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片

5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成

6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)

一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。

图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。

FIB-SEM还可以进行微纳图形的加工。

图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。

图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。

图6c 是在Au膜上加工的三维对称结构蜘蛛网。

图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。

FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。

利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。

最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。

不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/289265.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-23
下一篇2023-04-23

发表评论

登录后才能评论

评论列表(0条)

    保存