https://www.codetd.com/article/916129
软件AMOS可以做
https://mp.weixin.qq.com/s?__biz=MjM5MTI5MDgxOA==&mid=2650098738&idx=1&sn=319fcc4198fbcd36fc30fd1329e27bf0&chksm=beb6289f89c1a189115d96bb0f9bc3114a752f9bf1fed4c9979b2e965322d8e38c60844316de&scene=21#wechat_redirect
https://mp.weixin.qq.com/s?__biz=MjM5MTI5MDgxOA==&mid=2650098759&idx=1&sn=0099b81e77a2f8b6324e88a5b49773ed&chksm=beb628ea89c1a1fcdb4c068466e6f099e0bd1af0909bbc538aca4247477978b4b52b3b9aa036&scene=21#wechat_redirect
https://www.jianshu.com/p/d698dc099dec
https://www.jianshu.com/p/e0938fb35c45
https://blog.csdn.net/yjj20007665/article/details/66967966
χ2 卡方拟合指数 检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。原假设是模型协方差阵等于样本协方差阵。如果模型拟合的好,卡方值应该不显著。
RMR 是残差均方根。RMR 是样本方差和协方差减去对应估计的方差和协方差的平方和,再取平均值的平方根。RMR应该小于0.08,RMR越小,拟合越好。
RMSEA 是近似误差均方根 RMSEA应该小于0.06,越小越好。
GFI 是拟合优度指数,范围在0和1间,但理论上能产生没有意义的负数。按照约定,要接受模型,GFI 应该等于或大于0.90。
CFI 是比较拟合指数,其值位于0和1之间。CFI 接近1表示拟合非常好,其值大于0.90表示模型可接受,越接近1越好。
同时要求样本和指标之间有一个最低数量比例
结构方程模型适配度指标如下:
1、x2值:显著性概率值p>0.05(未达显著水平),x2使用样本数为100至200。
2、GFI值:>0.90。
3、AGFI值:>0.90。
4、RMR值:<0.05。
(SEM)的概念与Amos G raphics窗口界面的基本操作;后半部以各种实例介绍Amos G raphics在各种SEM模型中的应用。
全书采用AMOS图像界面,完全没有复杂的SEM理论推导和语法,最大的特点就是对利用AMOS进行结构方程模型各种分析的每一个步骤都有详细的讲解和图示。
这些统计量都是结构方程中用来检验你所建立的模型与数据的拟合程度的指标,称为拟合优度指数(goodness of fit index),简称为拟合指数。
不同学者提出了许多不同的拟合指数。
常用的指标一般是卡方,自由度df,RMSEA( Root Mean Square Error of Approximation, 近似误差均方根)),GFI(goodness-of-fit index, 拟合优度指数), NNFI(non-normed fit index)和CFI(comparative fit index, 比较拟合指数)。
一般认为,如果RMSEA在0.08以下(越小越好),GFI、NNFI和CFI在0.9以上(越大越好),所拟合的模型是一个“好”模型。AGFI(adjusted goodness-of-fit index),IFI也是越大越好,表明模型拟合的较好,不过现在不常用。
卡方和自由度主要用于比较多个模型,卡方值越小越好,自由度反映了模型的复杂程度,模型越简单,自由度越多,反之,模型越复杂,自由度越少。总的来说,我们追求的是既简单又拟合得好的模型。
如果你要更详细的了解这些拟合指数,请参考侯杰泰等人的著作《结构方程模型及其应用》。
SEM简单介绍,以下资料来源
因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。
一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。
历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).
SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。
因果关系:
究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。
举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:
3. 这时还有可能出现更多的潜在变量:
这里我又举另外一个例子,回归模型
在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。
我们在举另外一个例子“路径分析”
路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。
在这里我们总结一下:
回归分析简单的说就是:X真的影响Y 吗?
路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。
在这里要提一下因素模型(factor model)
在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。
举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。
相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。
这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)