一、化学作用过程
伴随着烃类气体从油气藏 ( 层) 向地表垂直微渗漏的二氧化碳,或者由微生物降解烃类产生的二氧化碳,能与粘土矿物反应形成次生方解石和硅化 ( Kartsev et al. ,1959)及菱铁矿。
硫化氢与岩石中的含铁矿物发生如下化学反应,形成黄铁矿、磁铁矿等。
特态矿物法及其在石油勘探中的应用
在还原环境下:
特态矿物法及其在石油勘探中的应用
显然,H2S的产生主要决定了FeS2的形成,而FeS2是磁黄铁矿的主要物质来源(Goldhaber et al.,1991)。Sassen et al.(1989)以得克萨斯州Demon Mound盐丘中碳酸盐盖层岩石及上覆沉积岩中原油普遍渗漏情况为例,探讨了硫酸盐的还原作用与原油的蚀变作用期间磁黄铁矿的形成机制,这是研究与烃类相关的硫成矿作用的极好例子,它为岩石中原油运移、微生物活动及成岩作用磁性矿物之间的联系提供了证据。他们对盖层岩石中方解石的扫描电镜(SEM)分析结果显示,固体原油残留物、微生物与硫酸盐矿物及亚铁磁性的磁黄铁矿之间密切相关,并与黄铁矿、闪锌矿、白铁矿也密切相关,硫元素与硫酸盐的还原作用相关,烃的碳同位素与原油烃的微生物氧化作用相关。而从含磁黄铁矿样品中提取的原油烃类明显较少受到生物降解作用的蚀变。C1~C4烃的生物降解作用最为明显,反之,重烃最为明显受到水洗作用的浊变。
在铁的硫化矿物中,硫的来源具有不同的途径,有机、无机机理均可产生硫化物,并可能受烃渗漏带的深度及温度条件的控制,如在Cement油田,位于二叠纪地层下部的重硫可能来自储层中水成硫化物的热化学反应,它由Pennsylvania组或更老地层中硫酸盐矿物的还原产生。靠近地表轻硫-细菌硫化物是在开放的硫酸盐条件下形成的。而细菌硫化物是由厌氧细菌产生的,磁黄铁矿只在主要产层以下深达200~500m的地层中出现,这表明了次生成矿作用与烃渗漏之间存在联系。虽然控制磁黄铁矿形成的因素还不很清楚,但至少与促使黄铁矿含量增高的Eh的升高或铁与硫化物比值的减少等条件的变化相关。
磁黄铁矿的形成不仅取决于温度,同时还取决于硫离子的浓度。在硫化氢浓度增高的情况下,二价铁与之反应形成黄铁矿(FeS2)而硫化氢浓度不大时,二价铁与之反应则形成磁黄铁矿(FeS)。但是,柴达木盆地特态矿物研究的结果则恰好相反。磁黄铁矿大多出现在硫离子浓度更高的含膏盐层的剖面上,且在磁黄铁矿的周围基本上都可观察到稻草黄晕。而黄铁矿则出现在硫离子浓度更低的不含膏盐层的砂泥岩剖面上。
上述反应形成的黄铁矿、磁黄铁矿在Eh值大于零的岩石孔缝系统内形成后,受围岩氧化环境的影响氧化并同时水解,发生褐铁矿化作用,生成褐铁矿[Fe(OH)3]。
硫磺的形成途径可能有如下两种:一是硫化氢微渗漏至地表(或暴露于空气中),在氧化条件下经物理-化学作用而形成,其反应式为
特态矿物法及其在石油勘探中的应用
另一种是由于烃类微渗漏而形成的黄铁矿或其他硫酸盐暴露地表经强氧化分解成在黄铁矿氧化形成Fe2(SO4)3之后,这种硫酸盐又作用于黄铁矿而形成硫磺,其化学反应式如下所示:
特态矿物法及其在石油勘探中的应用
二、二价铁和硫化氢的来源
二价铁和硫化氢的存在和持续不断的补给是特态矿物形成的关键。
1.二价铁的来源
在黑、灰和绿色等还原性岩石中,铁离子主要以二价的形式存在。但是,在褐、紫、红等氧化性岩石中,铁离子则主要以三价的形式存在,当来自油气藏(层)的烃及非烃组分通过岩石的孔缝系统时,利于其形成局部还原环境,使围岩表面的三价铁还原成二价铁。化学反应消耗的与继续反应需要的二价铁将由于浓度梯度引起的平衡作用和持续进行的还原反应得以补充。
2.硫化氢的来源
1)石油中含有少量的硫,在适宜的条件下,硫同石蜡族烃相互作用形成硫醇等有机物,受热后分解生成硫化氢,石油发生运移时这种作用增强。此外,石油中原有的硫化物、硫醇及其他有机硫化物热解也可以生成硫化氢。在柴达木盆地西部油气区内除七个泉、狮子沟两油田原油的含硫量为0.3%~0.87%外,其他各油田原油的含硫量均为0.1%~0.3%。
油气井开发中也可生成硫化氢。苏联乌辛油田1977年开始天然驱动力式进行开发,含硫量高达2.1%,埋深1100~1450m。1982年热采,开发初期未发现硫化氢,后来在油气和水中却含有硫化氢。1982~1986年,在原油初馏段所产出的气体中,硫化氢从14mg/m3增加到358mg/m3(即从0.001%增加到0.025%),且不论天然驱开发区还是热采区,都有硫化氢产出。在天然驱采区的2610和2611两井所采出的气中,硫化氢含量很高,这两口井位于二叠—石炭系碳酸盐岩地层的高裂缝带。
模拟研究表明,当温度为200~250℃时,地层系统的物理-化学性质起了质的变化,此时,生成大量的气体,而且成分也发生了变化:饱和烃量减少,硫化氢和二氧化碳的浓度增加,并出现不饱和烃。温度到250℃,硫化氢含量高达1%,比100℃时的0.33%增加30倍。
2)天然气中含有硫化氢,也含有少量的有机硫化物(如硫醇、硫醚、二硫化物等),这些有机硫化物热解可生成硫化氢。
天然气中硫化氢含量小于0.3%时称为低含硫气,0.3%~1%称为含硫气,1%~5%称为中含硫气,大于5%者称为高含硫气。天然气中的硫化氢有原生(有机质热解成气的同生物)和次生(硫酸盐还原)两种。有机质(如蛋白质)分解产物中氨基酸、半胱氨酸、胱氨酸和蛋氨酸等均含有硫化物,在温度40~230℃时分解产生硫化氢。
次生硫化氢则是硫酸盐还原产生,形成的是高含硫气藏,如美国得克萨斯气田含硫化氢达98%,我国冀中凹陷赵兰庄气田硫化氢含量达92%,法国克拉气田天然气中硫化氢含量为16%。主要成因是:1t硬石膏(CaSO4)与烃类气体(如甲烷)的化学反应可产生150m3硫化氢,在硫酸盐与碳酸盐沉积旋回中的油气层中,天然气中硫化氢含量均高。
原生硫化氢主要出现在陆源砂泥岩沉积旋回的气层内,而次生硫化氢主要出现在碳酸盐岩沉积旋回中气层内。原生硫化氢富集重硫同位素,且与伴生的黄铁矿的硫同位素一致,次生的硫化氢富集轻硫同位素,且与周围的硬石膏的硫同位素一致。
3)来自大气水中的厌氧细菌分解烃类产生硫化氢,反应式为
特态矿物法及其在石油勘探中的应用
由于天然气中含丰富的甲烷,所以不缺乏形成特态黄铁矿、磁铁矿、磁黄铁矿所需的硫化氢。
铜渣的综合利用研 究 主 要 集 中 在 三 个 方 面,一 是 提 取 有 价 金 属,二是用作建筑材料,三是用作催化剂或土壤改良剂。铜渣中的铁可以通过磁选得到铁精矿或是还原得到铁合金。提铁后的铜渣尾渣可用作建筑材料,其中制作微晶玻璃或矿渣棉附加值较高。重金属冶炼尾渣资源化利用和安全处置日益受到全世界的关注,铜渣就是其中一种。2017年我国精铜产量高达895万t,按每产出1t精铜至少排放2.2t铜 渣 计 算,仅 过 去 一 年 我 国 就 排 放1780万t铜渣。由于迄今为止没有高效的利用途径,铜渣基本在工厂附近堆放保存,我国铜渣堆存量已逾亿t,不仅占用宝贵的土地资源,而且污染环境,给企业带来沉重负担。如何更好地将铜渣资源化利用是铜冶炼行业亟待解决的问题,对推进国家生态文明建设意义重大。
铜渣的成分及物相分析
1.1 铜渣的成分
铜渣主要是在造锍熔炼过程和铜锍吹炼过程中产生的,主要由氧化物、硅酸盐和硫化物组成。铜渣中含有多种有价金属,其典型成分是 (%):Fe 30~40、Cu 0.5~2.1、SiO2 35~40、Al2O3≤10、CaO≤10,此外还含有少量的 Zn、Pb、Co、Ni等元素,以及少量 Au、Ag等贵金属。不同造锍熔炼方法产出的铜渣典型成分如表1所示。
1.2 铜渣的物相分析
铜渣主要含有铁橄榄石 (2FeO·SiO2)、磁铁矿 (Fe2O3)、硫化物,以及 一 些 脉 石 成 分 组成的无定 型 玻 璃 体。SARFO 等用 SEM—EDS—MLA 联合分析法发现铜渣主要物相是硅酸盐,铁钙铝 硅 酸 盐 (Fe1.2Ca0.5Al0.3SiO4) 和 硅 酸 亚 铁(Fe2SiO4),二 者 含 量 高 达 84%;其 次 是 磁 铁 矿(Fe3O4),占11.41%;硫化物占比较少。铜全部是以硫化物形式存在,主要以斑铜矿 (Cu5FeS4)或灰铜矿 (Cu2S)形式存在,二者含量占渣总质量的0.97%,主要 来 源于火 法冶 炼 过 程 中 的 渣 铜损失,因粒度小或是时间短不能汇聚到锍相或金属相而遗留在铜渣中。铜、铁及其他矿物紧密共生、相互交织在一起。铜矿物多被磁性氧化铁所包裹,呈球形滴状结构,有的与铜铁矿物共同形成斑状结构位于铁橄榄石基体中,或数种铜矿物相嵌共生;磁性氧化铁在硅酸盐基体中呈自形晶结构和硅酸盐共晶结构,以多边状、树枝状、放射状结构产出;铁橄榄石呈柱状、板状、粒状组成炉渣基体。
目前国内外对铜渣综合利用的研究较多,主要集中在三个方面,一是有价金属的提取,主要是铁和铜;二是用作建筑材料;三是用作催化剂或土壤改良剂。
铜渣中有价金属的提取
我国铁 矿 砂 的 含 铁 量 为31.3%,世 界 铜 矿平均利 用 品 位 为 1.07%,铜 渣 中 铜、铁 含 量 均达到资源化品位。尽管铜渣中铜铁含量高,但由于其赋存形态复杂又相互紧密共生,回收较为困难。铜渣中有价金属的提取有两种方法:一是选矿法,得到精矿;二是还原法,得到金属或合金。
2.1 选矿法
选矿法主要利用铜渣中各种氧化物物理性能的不同,浮选法可以选出含铜的渣精矿,磁选法可以选出含铁的铁精矿。选矿效果与铜渣的冷却方式有很大关系。渣中铜本身含量稀少且晶粒较细,急冷晶粒更细 (90%在5μm 以下),磨矿工艺难以使其解离。王俊娥等发现高温铜渣冷却速度越慢,渣中铜相分子粒度越大,随着冷却速度的降低,矿物晶型由细小分散变得完整连续。
汪泰等将铜渣磨到-74μm 占93%,并在球磨机中添加碳酸钠,用 GD-3捕集剂浮选获得含铜29.55%的精矿,铜回收率达90.99%。
由于铜渣中的铁大部分是以没有磁性的铁橄榄石相存在,若直接磁选只能回收少部分铁,一般考虑先将铁橄榄石氧化成具有磁性的铁再磁选。詹保峰等将含铁为43.73% (铁橄榄石占 51.89%)的铜渣浮铜尾矿与碳酸钠、煤粉等按一定比例混匀,在800℃下进行焙烧,焙烧后浮铜尾矿中的铁橄榄石大部分转变成了磁铁矿。焙砂用稀酸浸出得到 浸 出 渣, 浸 出 渣 再 通 过 强 磁 选 可 获 得 含 铁62.52%的铁精矿。
2.2 还原法
高温下用还原剂还原熔炼铜渣可得到金属铁或者富含其它金属元素的铁合金。除了SiO2、Al2O3和CaO不能被还原,其 它 金 属 氧 化 物 几 乎 都 能 被还原。还原出的金属可以用作炼钢原料,但铜在炼钢过程中不能氧化除去,是大部分钢材的杂质元素。由于铜与硫的亲和力强,加入硫化物可使铜生成硫化铜除 去。含铜的铁合金也 可 以 直 接 用 来冶炼含铜铸铁。锌氧化物会被还原,但锌会挥发,不会富集在铁中
磁铁矿(Magnetite),地质学专业术语,为氧化物类矿物磁铁矿的矿石。属等轴晶系。晶体呈八面体、十二面体。晶面有条纹。多为粒块状集合体。铁黑色,或具暗蓝靛色。条痕黑,半金属光泽。不透明。无解理。断口不平坦。硬度5.5~6.5。密度5.16~5.18g/cm3。具强磁性。性脆。无臭,无味。常产于岩浆岩、变质岩中。海滨沙中也常存在。分布山东、河北、河南、辽宁、黑龙江、内蒙古、湖北、云南、广东、四川、山西、江苏、安徽。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)