1、方法辨别
结构方程模型SEM包括测量关系和影响关系;既可以测量各因素内部结构及相关之间的关系情况,也可以测量多个自变量与多个因变量之间的影响关系。
结构方程模型与路径分析主要区别就在于完整的结构方程模型包含了测量关系,如果仅包括影响关系,此时称作路径分析。如此以外,还有一些容易混淆的方法,
2、分析思路
SPSSAU
从整体分析角度看,完整分析可以包括以下几个步骤:模型构建→探索性因子分析/验证性因子分析→设置模型→评估模型→模型调整。
3、SPSSAU操作
结构方程模型是结合了多种统计分析方法,可同时检验因子、分析项、误差项间的关系。
结构方程模型(SEM)包括连续潜变量之间的回归模型(Bollen, 1989Browne &Arminger, 1995Joreskog &Sorbom, 1979)。也就是说,这些潜变量是连续的。这里需要注意的是:1. 潜变量(latent variables)是与观察变量(Observed variables)相对的,可通过数据分析观察;2. 观察变量可以是连续的(continuous)、删失的(censored)、二进制的(binary)、有序的(ordinal)、无序的(nominal)、计数的(counts),或者是这些类别的组合形式。
SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。
测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。
如何描述它们之间的关系?可以通过以下方式:
1. 若因子指标是连续的,用线性回归方程(linear regression equations);
2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);
3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);
4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);
5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。
结构模型 则在一个多元回归方程中描述了三种变量关系:
1. 因子之间的关系;
2. 观察变量之间的关系;
3. 因子和不作为因子指标的观察变量之间的关系。
同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:
1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);
2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);
3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);
4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);
5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。
在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。
以下特殊功能也可以通过SEM实现:
1. 单个或多组分析(Single or multiple group analysis);
2. 缺失值(Missing data);
3. 复杂的调查数据(Complex survey data);
4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);
5. 随机斜率(Random slopes);
6. 限制线性和非线性参数(Linear and non-linear parameter constraints);
7. 包括特定路径的间接作用(Indirect effects including specific paths);
8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);
9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);
10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。
以上功能也适用于CFA和MIMIC。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)