prism如何计算SEM

prism如何计算SEM,第1张

SEM不可用定类变量。如果一定要用,方法一是将其转换成 dummy variable (零一变量),比较容易;方法二是将其当作 grouping variable(分组变量), 然后每一组为一个样本,做multigroup comparisons(多组比较模型),比较麻烦;方法三是改用Latent Classification Model,那是全新的另一世界。

回到如何计算自由度 (degrees of freedom, df)。记得很久前小彭问过类似问题,我答应要写个贴,但一直忘了。估计小彭现在已知道答案了,但大概还有其他庄员有兴趣。

1、在统计学中,自由度指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中。

2、首先,在估计总体的平均数时,由于样本中的 n 个数都是相互独立的,从其中抽出任何一个数都不影响其他数据,所以其自由度为n。

在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。

自由度定义:

统计学上,自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数,称为该统计量的自由度。一般来说,自由度等于独立变量减掉其衍生量数。举例来说,变异数的定义是样本减平均值(一个由样本决定的衍生量),因此对N个随机样本而言,其自由度为N-1。数学上,自由度是一个随机向量的维度数,也就是一个向量能被完整描述所需的最少单位向量数。

以上内容参考:百度百科-自由度


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/322381.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-01
下一篇2023-05-01

发表评论

登录后才能评论

评论列表(0条)

    保存