SEM简单介绍,以下资料来源
因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。
一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。
历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).
SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。
因果关系:
究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。
举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:
3. 这时还有可能出现更多的潜在变量:
这里我又举另外一个例子,回归模型
在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。
我们在举另外一个例子“路径分析”
路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。
在这里我们总结一下:
回归分析简单的说就是:X真的影响Y 吗?
路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。
在这里要提一下因素模型(factor model)
在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。
举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。
相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。
这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。
结构方程模型(SEM)包括连续潜变量之间的回归模型(Bollen, 1989Browne &Arminger, 1995Joreskog &Sorbom, 1979)。也就是说,这些潜变量是连续的。这里需要注意的是:1. 潜变量(latent variables)是与观察变量(Observed variables)相对的,可通过数据分析观察;2. 观察变量可以是连续的(continuous)、删失的(censored)、二进制的(binary)、有序的(ordinal)、无序的(nominal)、计数的(counts),或者是这些类别的组合形式。
SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。
测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。
如何描述它们之间的关系?可以通过以下方式:
1. 若因子指标是连续的,用线性回归方程(linear regression equations);
2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);
3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);
4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);
5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。
结构模型 则在一个多元回归方程中描述了三种变量关系:
1. 因子之间的关系;
2. 观察变量之间的关系;
3. 因子和不作为因子指标的观察变量之间的关系。
同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:
1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);
2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);
3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);
4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);
5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。
在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。
以下特殊功能也可以通过SEM实现:
1. 单个或多组分析(Single or multiple group analysis);
2. 缺失值(Missing data);
3. 复杂的调查数据(Complex survey data);
4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);
5. 随机斜率(Random slopes);
6. 限制线性和非线性参数(Linear and non-linear parameter constraints);
7. 包括特定路径的间接作用(Indirect effects including specific paths);
8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);
9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);
10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。
以上功能也适用于CFA和MIMIC。
结构方程模型 (structural equation modeling,SEM)是一种建立、估计和检验因果关系模型的方法。它可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。
为何要用结构方程模型?
很多社会、心理研究中所涉及到的变量,经常不能准确、直接地测量,这种变量称为 潜变量 ,如工作自主权、工作满意度等。传统的统计分析方法不能妥善处理这些潜变量,而结构方程模型能同时很好地处理这些潜变量及其指标。
矩形是可视变量draw observed,椭圆形是潜变量draw unobserved
B站资源【推荐视频】https://www.bilibili.com/video/BV1PW411E7kz?p=14
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)