毫米波其本质上就是一种高频电磁波,是波长1-10毫米的电磁波,通常来说就是频率在30GHz-300GHz之间的电磁波。是5G通讯中所使用的主要频段之一。
5G通讯中主要使用两个通讯频段,Sub-6GHz为低频频段,主要使用6GHz以下频段进行通讯。毫米波频段则使用24GHz-100GHz的高频毫米波进行通讯,5G对于毫米波的利用,大多集中在24GHz/28GHz/39GHz/60GHz几个频段之中。
扩展资料:
注意事项:
根据3GPP协议规定,5G网络主要使用两段频率,FR1频段和FR2频段。FR1频段的频率范围是450MHz-6GHz,又称sub 6GHz频段,FR2频段的频率范围是24.25GHz-52.6GHz。
毫米波带来了大带宽和高速率。基于sub 6GHz频段的4G LTE蜂窝系统可使用的最大带宽是100MHz,数据速率不超过1Gbps。而在毫米波频段,可使用的最大带宽是400MHz,数据速率高达10Gbps甚至更高。在5G时代,这样的带宽表现才能满足用户对特定场景的需求。
参考资料来源:百度百科-毫米波
•波长在1到10毫米之间的电磁波,通常对应于30GHz至300GHz之间的无线电频谱
•该术语通常对应于38、60以及94GHz附近的几个频带
•美国联邦通信委员会早在2015年就已经率先规划了28GHz、37GHz、39Ghz和64-71Ghz四个频段为美国5G毫米波推荐频段。这个几个频带适合长距离通讯,不像60GHz必须承受约20dB/km的氧气吸收损耗,信号损耗较大(大气传播损失通常以每公里传播的分贝(dB)损失来进行定义)。这些频率也能在多路径环境中顺利运作,并且能用于非可视距离(NLoS)通讯。透过高定向天线搭配波束成形与波束追踪功能,毫米波便能提供稳定且高度安全的连结。
•3GPP决定5G NR继续使用OFDM技术,因此相对于4G,5G并没有颠覆式创新。毫米波是5G最大的“新意”。5G其它新技术的引入,比如massive
MIMO、新的numerology(子载波间隔等)、LDPC/Polar码等等,都与毫米波密切相关,都是为了让OFDM技术能更好地扩展到毫米波段。
•5G 也可以被称为“扩展到毫米波的增强型4G”或者“扩展到毫米波的增强型LTE”。
• 随着移动通信的飞速发展,30GHz之内的频率资源几乎被用完了
由频率、波长、天线的关系,可以看到, 频率约高、波长越短、天线越短 。因此就又了毫米波
•是可用的大量频谱带宽。以往,基于sub 6GHz频段的4GLTE蜂窝系统可以使用的最大带宽是100MHz,数据速率不超过1Gbps。而在毫米波频段,移动应用可以使用的最大带宽是400MHz,数据速率高达10Gbps甚至更多
•其次,毫米波波束窄,方向性好,有极高的空间分辨力。这一特性使得运营商可以部署紧邻的多个独立链接而不会互相干扰,毫米波非常适用于网络拓扑,例如点对点网格,密集的轮辐和环形
•对沙尘和烟雾具有很强的穿透性,原件尺寸小,探测能力强,安全保密高,许可证价格低廉
•传播损耗太,传输距离短(尤其是降雨时),器件加工精度要求高
1、原理
毫米波振荡器产生毫米波(8mm)振荡,设其频率为f0,经隔离器加至环行器,再由天线定向辐射出去,并在空间以电磁波形式传播,当此电磁波在空间遇到目标(弹丸)时反射回来。
如果目标是运动的,则反射回来的电磁波频率附加了一个与目标运动速度vr成正比的多普勒频率fd,使反向回波频率变为f0±fd(目标临近飞行取“+”,目标远离飞行取“%”),此回波被天线接收下来,经环行器加至混频器,在混频器中与经环行器泄漏的信号(作为本振信号)f0进行混频。
混频器为非线性元件,其输出有多种和差频率,如fd,f0±fd,2f0±fd,…,等,经前置放大器选频得多普勒信号(频率为fd),再经长电缆(长50~100m)送至预处理系统的主放大器,主放大器附有自动增益控制与手动增益控制电路。手动增益用来调整放大器的总增益,自动增益控制用来增加放大器的动态范围。
2、优点
(1)小天线口径、窄波束:高跟踪和引导精度;易于进行低仰角跟踪,抗地面多径和杂波干扰;对近空目标具有高横向分辨力;对区域成像和目标监视具备高角分辨力;窄波束的高抗干扰性能;高天线增益;容易检测小目标,包括电力线、电杆和弹丸等。
(2)大带宽:具有高信息速率,容易采用窄脉冲或宽带调频信号获得目标的细节结构特征;具有宽的扩谱能力,减少多径、杂波并增强抗干扰能力;相邻频率的雷达或毫米波识别器工作,易克服相互干扰;高距离分辨力,易得到精确的目标跟踪和识别能力。
(3)高多普勒频率:慢目标和振动目标的良好检测和识别能力;易于利用目标多普勒频率特性进行目标特征识别;对干性大气污染的穿透特性,提供在尘埃、烟尘和干雪条件下的良好检测能力。
(4)良好的抗隐身性能:当前隐身飞行器上所涂覆的吸波材料都是针对厘米波的。根据国外的研究,毫米波雷达照射的隐身目标,能形成多部位较强的电磁散射,使其隐身性能大大降低,所以,毫米波雷达还具有反隐身的潜力。
扩展资料:
适用需求:
(1)高精度多维搜索测量:进行高精度距离、方位、频率和空间位置的测量定位。
(2)雷达安装平台有体积、重量、振动和其它环境的严格要求:毫米波雷达天线尺寸小、重量轻,容易满足便携、弹载、车载、机载和星载等不同平台的特殊环境要求。
(3)目标特征提取和分类识别:毫米波雷达高分辨力、宽工作频带、大数值的多普勒频率响应、短的波长易获得目标细节特征和清晰轮廓成像等特点,适于目标分类和识别的重要战术要求。
(4)小目标和近距离探测:毫米波短波长对应的光学区尺寸较小,相对微波雷达更适于小目标探测。除特殊的空间目标观测等远程毫米波雷达外,一般毫米波雷达适用于30 km 以下的近距离探测。
(5)抗电子战干扰性强:毫米波窗口可用频段宽,易进行宽频带扩频和跳频设计。同时针对毫米波雷达的侦察和干扰设备面临宽频带、大气衰减和窄波束等干扰难题,毫米波雷达相对微波雷达具有更好的抗干扰能力。
参考资料来源:百度百科-毫米波雷达
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)