氮化铝打孔

氮化铝打孔,第1张

For the laser drilling of aluminum nitride (AlN) ceramic the influence of the laser parameters and material properties on the drilling rate, quality of the holes and the effects related to plasma formation are investigated. The ablation is performed by pulsed irradiation of Nd:YAG laser at wavelengths of 1064, 532 and 355 nm, at pulse duration of 6 ns (FWHM) in air. The SEM scans of the processed surface reveal regular, cylindrically shaped holes of diameter of about 100 μm obtained under conditions of constant fluence at all wavelengths applied. Holes are surrounded by circular zones which are colored different than the non-processed surface, and of a much larger diameter. Comparison of the original material composition with that of the processed one made by EDX shows a decrease of the N concentration in the affected area. The zones are identified as heat-affected due to the high thermal conductivity of the ceramic material and change of the photon distribution due to multiple reflections into the material. In the LIBS spectra recorded in order to obtain the composition of the ablated material the presence of ions and neutrals depends on the laser intensity applied. At intensity values close to the ablation threshold the ejected material consists mainly of neutrals and doubling the intensity results in appearance of single-ionized Al species. The ionized species dominate over neutrals under conditions of higher drilling rate (15 GW/cm2 at 532 nm). Their existence in the plasma plume together with clusters is confirmed by the TOF-MS spectra. It also corresponds to the characteristic spatial structure of the plume. The investigation of the decomposition reactions of AlN in dependence on the applied laser intensity is based on numerical solving of the three dimensional heat-transfer equation. A solution consistent with the experimental observation indicates that at threshold the ceramic decomposes into gaseous nitrogen and solid Al particulates, while at higher fluences the Al vaporizes and influences the drilling quality.

铝合金压铸件表面处理分为前处理和后处理,前处理是为了去除表面氧化皮、油污,增加后处理附着力及改善外观效果。铝合金压铸件表面前处理最常用的有抛丸、喷砂和磷化3种,后处理一般使用喷涂、氧化、电镀、电泳4种。其他的表面处理方法因成本的原因,只应用于有特殊要求的产品上。

从成本方面进行选择,前处理依次为抛丸→喷砂→磷化→抛光,喷涂→电泳→氧化→电镀。磷化后只能进行喷涂、电泳,不能再做氧化、电镀处理。

从装饰和防腐蚀方面进行选择,前处理依次为抛光→磷化→喷砂→抛丸,氧化→电镀→喷涂→电泳。

汽车发动机壳体一般采用抛丸→喷涂处理。

表面前处理方法

1、手工处理:

如刮刀、钢丝刷或砂轮等。用手工可以除去工件表面的锈迹和氧化皮,但手工处理劳

动强度大、生产效率低,质量差,清理不彻底。

2、化学处理:

主要是利用酸碱性或碱性溶液与工件表面的氧化物及油污发生化学反应,使其溶解在酸性或碱性的溶液中,以达到去除工件表面锈迹氧化皮及油污,再利用尼龙制成的毛刷辊或

304#不锈钢丝(耐酸碱溶液制成的钢丝刷辊清扫干净便可达到目的。化学处理适应于对薄板件清理,但缺点是:若时间控制不当,即使加缓蚀剂,也能使钢材产生过蚀现象,对于较复杂的结构件和有孔的零件,经酸性溶液酸洗后,浸入缝隙或孔穴中的余酸难以彻底清除,若处理不当,将成为工件以后腐蚀的隐患,且化学物易挥发,成本高,处理后的化学排放工作难度大,若处理不当,将对环境造成严重的污染。随着人们环保意识的提高,此种处理方法正被机械处理法取代。

3、机械处理法:

主要包括钢丝刷辊拉丝法,机械抛光法、喷丸法。

a、钢丝刷辊抛光法也就是刷辊在电机的带动下,刷辊以与轧件运动相反的方向在板带的上下表面高速旋转刷去氧化皮。刷掉的氧化皮采用封闭循环冷却水冲洗系统冲掉。

b、 机械抛光是靠切削、材料表面塑性变形去掉被抛光后的凸部而得到平滑面的抛光方法,一般使用油石条、羊毛轮、砂纸等,以手工操作为主,特殊零件如回转体表面,可使用转台等辅助工具,表面质量要求高的可采用超精研抛的方法。超精研抛是采用特制的磨具,在含有磨料的研抛液中,紧压在工件被加工表面上,作高速旋转运动。利用该技术可以达到Ra0.008μm的表面粗糙度。

c、喷丸分为抛丸和喷砂:

用钢丸或砂粒进行表面处理,打击力大,清理效果明显。但抛丸对薄板工件的处理,容易使工件变形,且钢丸打击到工件表面(无论抛丸或喷丸)使金属基材产生变形,由于Fe304和FE203没有塑性,破碎后剥离,而油膜与其材一同变形,所以对带有油污的工件,抛丸、喷砂无法彻底清除油污。在现有的工件表面处理方法中,清理效果最佳的还数喷砂清理。喷砂适用于工件表面要求较高的清理。喷砂过程中产生大量的矽尘无法清除,严重影响操作工人的健康并污染环境。

根据使用的方法不同,可将表面后处理技术分为下述种类。

一、电化学方法

这种方法是利用电极反应,在工件表面形成镀层。其中主要的方法是:

1、电镀

在电解质溶液中,工件为阴极,在外电流作用下,使其表面形成镀层的过程,称为电

镀。镀层可为金属、合金、半导体或含各类固体微粒,如镀铜、镀镍等。

2、氧化

在电解质溶液中,工件为阳极,在外电流作用下,使其表面形成氧化膜层的过程,称

为阳极氧化,铝合金表面形成三氧化二铝膜。

3、电泳

工件作为一个电极放入导电的水溶性或水乳化的涂料中,与涂料中另一电极构成解电路。在电场作用下,涂料溶液中已离解成带电的树脂离子,阳离子向阴极移动,阴离子向阳极移动。这些带电荷的树脂离子,连同被吸附的颜料粒子一起电泳到工件表面,形成涂层,这一过程称为电泳。

二、化学方法

这种方法是无电流作用,利用化学物质相互作用,在工件表面形成镀覆层。其中主要的方法是:

1、化学转化膜处理

在电解质溶液中,金属工件在无外电流作用,由溶液中化学物质与工件相互作用从而

在其表面形成镀层的过程,称为化学转化膜处理。如金属表面的发蓝、磷化、钝化、铬盐处理等。

2、化学镀

在电解质溶液中,工件表面经催化处理,无外电流作用,在溶液中由于化学物质的还

原作用,将某些物质沉积于工件表面而形成镀层的过程,称为化学镀,如化学镀镍、化学镀铜等。

三、热加工方法

这种方法是在高温条件下令材料熔融或热扩散,在工件表面形成涂层。其主要方法是:

1、热浸镀

金属工件放入熔融金属中,令其表面形成涂层的过程,称为热浸镀,如热镀锌、热镀铝等。

2、热喷涂

将熔融金属雾化,喷涂于工件表面,形成涂层的过程,称为热喷涂,如热喷涂锌、热

喷涂陶瓷等。

3、热烫印

将金属箔加温、加压覆盖于工件表面上,形成涂覆层的过程,称为热烫印,如热烫印铜箔等。

4、化学热处理

工件与化学物质接触、加热,在高温态下令某种元素进入工件表面的过程,称为化学热处理,如渗氮、渗碳等。

5、堆焊

以焊接方式,令熔敷金属堆集于工件表面而形成焊层的过程,称为堆焊,如堆焊耐磨合金等。

四、真空法

这种方法是在高真空状态下令材料气化或离子化沉积于工件表面而形成镀层的过程。

其主要方法是。

1、物理气相沉积(PVD)在真空条件下,将金属气化成原子或分子,或者使其离子化成离子,直接沉积到工件表面,形成涂层的过程,称为物理气相沉积,其沉积粒子束来源于非化学因素,如蒸发镀溅射镀、离子镀等。

2、离子注入

高电压下将不同离子注入工件表面令其表面改性的过程,称为离子注入,如注硼等。

3、化学气相沉积(CVD)低压(有时也在常压)下,气态物质在工件表面因化学反应而生成固态沉积层的过程,称为化学气相镀,如气相沉积氧化硅、氮化硅等。

五、喷涂

喷涂通过喷枪或碟式雾化器,借助于压力或离心力,分散成均匀而微细的雾滴,施涂于被涂物表面的涂装方法。可分为空气喷涂、无空气喷涂、静电喷涂。

1、空气喷涂

空气喷涂是目前油漆涂装施工中采用得比较广泛的一种涂饰工艺。空气喷涂是利用压缩空气的气流,流过喷枪喷嘴孔形成负压,负压使漆料从吸管吸入,经喷嘴喷出,形成漆雾,漆雾喷射到被涂饰零部件表面上形成均匀的漆膜。

2、无空气喷涂

无空气喷涂是利用柱塞泵、隔膜泵等形式的增压泵将液体状的涂料增压,然后经高压软管输送至无气喷枪,最后在无气喷嘴处释放液压、瞬时雾化后喷向被涂物表面,形成涂膜层。由于涂料里不含有空气,所以被称为无空气喷涂,简称无气喷涂。

3、静电喷涂

静电喷涂是利用高压静电电场使带负电的涂料微粒沿着电场相反的方向定向运动,并将涂料微粒吸附在工件表面的一种喷涂方法。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/342146.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-06
下一篇2023-05-06

发表评论

登录后才能评论

评论列表(0条)

    保存