amos是一款模型检验软件,也就是对矩结构的分析,主要是用于对结构方程模型(SEM)的建立和检验,不过也有使用liserl和mplus做SEM的,而amos的主要优势在于它是spss的兄弟,具有spss一样的图形界面,使用者仅仅使用鼠标点击的方法就可以建立和检验结构方程模型,mplus必须要学习一些代码,使用编程的方法来做统计。
从功能上说,Amos的功能非常有限,我估计大概只有Mplus功能的五分之一。Amos只能完成常规的CFA分析和回归分析,包括潜变量结构方程模型和路径模型,其他如现在比较流行的潜类别分析、多层线性模型、蒙特卡洛模拟研究、多重中介作用模型中的单独中介效应检验等。
此外,Amos能处理的变量类型有限,估计方法也不全面。所以,如果只是做常规线性模型,那Amos是足够了,但如果要做更深入复杂的分析显然就远远不够了。比如目前心理学、管理学领域使用很多的有调节的中介作用模型(个人认为有泛滥之势),很少用Amos软件来做,而多数是应用Mplus软件或SPSS的Process插件。
可以的。中介效应分析,顾名思义,就是探究A对B影响的中间过程M,即探究A对B的影响是否是通过“A先影响M,M再影响B”的方式进行。
M可以是一个变量,也可以是多个变量,且多以连续变量的形式呈现。当A通过M1、M2Mn对B产生影响时,M1-Mn为多重中介;当A先影响M1,M1再影响M2,M2再影响M3Mn影响B时,M1-Mn为链式中介;
其实应该说是最大似然法和最小二乘法的区别吧。采用OLS的回归分析方法存在几方面的限制:
(1)不允许有多个因变量或输出变量
(2)中间变量不能包含在与预测因子一样的单一模型中
(3)预测因子假设为没有测量误差
(4)预测因子间的多重共线性会妨碍结果解释
(5)结构方程模型不受这些方面的限制
SEM的优点:
(1)SEM程序同时提供总体模型检验和独立参数估计检验;
(2)回归系数,均值和方差同时被比较,即使多个组间交叉;
(3)验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;
(4)拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。
构方程模型最为显著的两个特点是:
(1)评价多维的和相互关联的关系;
(2)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。
1、最小二乘法的典型应用是求解一套x和y的成对数据对应的曲线(或者直线)方程。
其思想是:设y和x之间的关系可以用一个公式在表示,但其系数为待定系数。然后,将各个点的实测数据与计算求得的数据相减,得到“误差”或者不符值(有正有负,但其平方都是正的),将这些不符值的平方相加,得到总的“误差”。通过调整公式中的各个系数,使得误差平方和最小,那么就确定了y和x之间的方程的最好结果。求解最小二乘问题的过程中没有提及概率问题。
2、而极大似然估计值,是用于概率领域的一种方法,和最小二乘法是两个领域的。这种方法是应用求极大值的方法,让某一个公式求导值为0,再根据情况判断该极值是否是合乎要求。极大似然估计法可以用于正态分布中 μ, σ2的极大似然估计。极大似然估计法就是要选取类似的数值作为参数的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)