sem模型和logit模型的区别

sem模型和logit模型的区别,第1张

区别在于广义化线性模型中的联系函数的形式。

logit 采用对数形式。应用上,普通logit的响应变量是二元的。 logit的响应变量可以是多元的。统计软件 spss中: logit属于对数线性模型,分析结果主要为因变量自变量之间的关系,可以细化到各分类因变量与分类自变量之间。sem属于回归分析,分析结果为估计出自变量参数。

SEM是一般线性模型的扩展。它能使研究者同时检验一组回归方程。SEM软件不但能检验传统模型,而且也执行更复杂关系和模型的检验,例如,验证性因子分析和时间序列分析。

进行SEM分析的基本途径显示如下:

研究者首先基于理论定义模型,然后确定怎样测量建构,收集数据,然后输入数据到SEM软件中。软件拟合指定模型的数据并产生包括整体模型拟合统计量和参数估计的结果。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/353914.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-09
下一篇2023-05-09

发表评论

登录后才能评论

评论列表(0条)

    保存