amos结构方程模型是指潜在变量之间的关系。
在结构方程模型(structural equation modeling,SEM)中可以设定三种类型的变量:潜在变量、观察变量、误差变量。AMOS的应用范围很广,在心理学研究、医学及保健研究、社会科学研究、教育研究、营销研究、组织行为研究等领域都有许多应用。
使用AMOS模式必须在因果关系上满足以下基本条件:
(1) 二变量之间必须要有足够的关联性。
(2) 假设的“因”必须要发生在“果”之前。
(3) 变量之间的关系要有理论依据。
AMOS在解释不能直接测量的构念(construct)之间的因果关系方面有很大优势。
1、工作分工不同。
spss做前期数据描述和除结构线性模型外的多数统计工作,amos专做结构线性模型相关的统计。
2、使用对象不同。
对量表的区分效度(discrimination validity)检验时,发现有人用SPSS,主要是检验平均提取方差(Average variance extracted,AVE)与该因子与任何其他因子的共同方差(highest shared variance)的值。
而有人则用AMOS,检验修正指数(modification index,MI)的显著性,通过x2/df,NNFI,GFI,AGFI,CFI,RMSEA等拟合优度检验。
3、用途不同。
SPSS是探索性统计分析软件,AMOS是验证性统计分析软件。做探索性因素分析时用SPSS,探索性因素分析完成后,为了验证所得到的因子结构是否合理,就需要进行验证性因素分析。
现在的论文如果涉及因子分析的话,大多要求进行验证性因素分析,以及路径分析等等。这时候,AMOS就派上用场了,AMOS可以进行验证性因素分析、路径分析、群组分析等。
扩展资料
SPSS操作功能:
1、参数检验:单样本、两独立样本、配对样本。
2、方差分析:单因素、多因素、协方差分析。
3、非参数检验:X2、二项式分布、K—S检验。
4、相关分析和线性回归分析。
5、聚类分析。
6、因子分析。
7、信度分析。以上的内容是经常用到的,尤其是相关分析和线性回归分析。
以下回答的两个公式为基础:女生组:y1=a1+b1x+c1z; 男生组:y2=a2+b2x+c2z。1. 比较两个回归系数之间差别的公式为:(b1-b2)/se12,其中b1和b2是被比较的回归系,se12是两者的Join Standard Error(联合标准误差),其结果是一个以自由度为n-k-2的t分布(其中n是样本量、k是原来的自变量数,本案中为x和c两个)。2. 在SPSS(其实是任何OLS回归)中,你如果将男女分成两个样本分布做回归,可以得到b1和b2,但得不到联合标准误差se12(因为b1和b2出现在不同的模型中),所以无法用到上述公式。3. SEM(包括AMOS)是通过比较男女样本的拟合度之差别来比较两组回归系数之间的等同性,这种方法在OLS回归中并不适用。同时,SEM的这种做法是有代价的:它将一个总样本分成两个小样本,其结果是降低了Power of Analysis (统计分析效力),从而在没有降低犯Type I的误差的同时又提高了犯Type II误差。4.更合理的方法是男女不分组、保留在同一样本内,将性别转换成dummy变量,再生成性别与你想比较的自变量(如X)的交互变量(如X*性别),也就是说,将你的公式1(或公式2)中改成:Y = a + bX + cZ + dS +eSX + fSZ其中S是性别(假定男=0、女=1),SX是性别与X的交互变量、SZ是性别与Z的交互变量。如果男女在S上的取值(即0和1)代人该公式,就可以分解成以下两个公式(注意:样本还是一个):女生组(S=1):Y = a + bX + cZ + d1 +e1X + f1Z = (a+d) + (b+e)X + (c+f)Z男生组(S=0):Y = a + bX + cZ + d0 + e0X + f0Z = a + bX + cZ如果d是显著的(即男女本身之差别),就说明女生在Y上的截距(即平均值)比男生高d个单位;如果e是显著的(即性别对X与Y之关系的影响),就说明女生的X斜率比男生大e个单位;如果f是显著的(即性别对Z与Y之关系的影响),就说明女生的Z斜率比男生大f个单位。欢迎分享,转载请注明来源:夏雨云
评论列表(0条)