结构方程模型,CFA,路径分析,潜变量调节模型这几个是什么关系

结构方程模型,CFA,路径分析,潜变量调节模型这几个是什么关系,第1张

SEM就是输入相关矩阵或协方差矩阵,结合1个或多个构想的可能模型,统计软件(如Mplus、Lisrel)帮你算出拟合指数,输出各路径参数、拟合指数等,可以用于修正和比较模型。想了解SEM推荐侯杰泰老师的《结构方程模型及其应用》(现在不再版,只有影印版) 。CFA也是SEM(结构方程模型)的一种,但不是完整SEM;路径分析也是SEM的一个特例,但前者是对显变量,后者对潜变量。实际上SEM是很多统计方法(如t检验、方差分析、回归分析等)的特例,而SEM具有更准确的误差估计和信度指标。因为CFA可以检验量表结构,所以往往先做CFA,如果拟合不好,说明量表信效度不高,就难以做之后的分析。中介和调节检验有不同的方法,可以基于SEM对潜变量做分析,也可以化潜为显做层次回归(用SPSS)。要了解中介和调节,推荐温忠麟老师的文章,比如05年发在《心理学报》上的《调节效应与中介效应的比较和应用》,温忠麟老师的书《调节效应与中介效应分析》。看到你的标签里有“家庭关系”,你是做发展教育方向的吧!你所说的这些:SEM、中介调节都是统计前沿,发展教育也用得很多,但建议先多阅读文章和书,了解了原理再使用。

能。

首先SEM更加灵活,更加综合。传统方法的模型是提前规定的或者说是默认的,而做结构方程的时候,它对变量关系的限制几乎没有,需要你自己根据理论知识设定变量之间的关系。SEM既包含显变量又有潜变量,而传统的方法之分析显变量。在SEM中我们认为误差是存在的,你甚至可以规定不同变量之间误差的关系,但是传统的方法认为误差是没有的。传统方法能够输出变量间关系的直接的显著性检验结果,而SEM没有这样的结果,我们得用拟合指标来评价模型。结构方程模型可以很好地容忍多重共线性。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/371213.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-13
下一篇2023-05-13

发表评论

登录后才能评论

评论列表(0条)

    保存