SEM结构方程模型

SEM结构方程模型,第1张

R包lavaan可以做

https://www.codetd.com/article/916129

软件AMOS可以做

https://mp.weixin.qq.com/s?__biz=MjM5MTI5MDgxOA==&mid=2650098738&idx=1&sn=319fcc4198fbcd36fc30fd1329e27bf0&chksm=beb6289f89c1a189115d96bb0f9bc3114a752f9bf1fed4c9979b2e965322d8e38c60844316de&scene=21#wechat_redirect

https://mp.weixin.qq.com/s?__biz=MjM5MTI5MDgxOA==&mid=2650098759&idx=1&sn=0099b81e77a2f8b6324e88a5b49773ed&chksm=beb628ea89c1a1fcdb4c068466e6f099e0bd1af0909bbc538aca4247477978b4b52b3b9aa036&scene=21#wechat_redirect

https://www.jianshu.com/p/d698dc099dec

https://www.jianshu.com/p/e0938fb35c45

https://blog.csdn.net/yjj20007665/article/details/66967966

χ2 卡方拟合指数 检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。原假设是模型协方差阵等于样本协方差阵。如果模型拟合的好,卡方值应该不显著。

RMR 是残差均方根。RMR 是样本方差和协方差减去对应估计的方差和协方差的平方和,再取平均值的平方根。RMR应该小于0.08,RMR越小,拟合越好。

RMSEA 是近似误差均方根 RMSEA应该小于0.06,越小越好。

GFI 是拟合优度指数,范围在0和1间,但理论上能产生没有意义的负数。按照约定,要接受模型,GFI 应该等于或大于0.90。

CFI 是比较拟合指数,其值位于0和1之间。CFI 接近1表示拟合非常好,其值大于0.90表示模型可接受,越接近1越好。

同时要求样本和指标之间有一个最低数量比例

具体方法如下:

1:梳理建模流程(因子分析)如果出现模型拟合大面积不达标时,首先应该从模型本身找原因。结构方程模型包括测量模型和结构模型,而我们正常情况下只会关注于结构模型即影响关系等,而完全忽略掉还有测量模型。如果说测量模型不好,那拟合指标肯定不会好。但是测量模型是我们容易忽视的地方。因而第一点是查看测量模型是否有问题。

2:调整模型(MI指数调整和手工调整)如果出现模型大面积不达标,相信通过梳理建模流程,删除不合理项之后,可以让很多指标均正常。本小节说明第二种调整模型的方式,即调整模型。调整模型包括两种,一是MI指数调整和手工模型调整。

结构方程模型基本原理:

SEM是数据分析的一种特殊形式,从一个指定了多变量间(假定的)相互关系的模型开始,变量间的关系被形式化为一组方程,用于测试这些变量并量化它们之间的关系。

具体步骤如下:

1.首先,回归系数不显著不能简单滴认为对应的解释变量对被解释变量没有影响。先观察下F检验值,如果整体线性检验不显著,那么说明模型设定为线性不合适,需采用其他模型形式。如非线性回归模型。如果替代模型的回归系数t检验拒绝原假设(...

2.可以使用一些优化技巧让模型更加关注占比较少类的样本。从而使模型能专注学习此类的特征,而不是过多的关注样本数量较多的类别。例如使用focalloss。也有其他更多的解决类别不均衡的loss函数。

3.如果实在需要显著的结果,有两个重要的方法,首先是看变量本身的度量,有没有其他度量的方法和调整的空间、比如楼上已经提到的融资约束的度量、分组的化哑变量的设置等等另一个就是样本的选择和缺失值的处理,是替换成零


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/394454.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-18
下一篇2023-05-18

发表评论

登录后才能评论

评论列表(0条)

    保存