标准差的计算公式

标准差的计算公式,第1张

标准差公式是一种数学公式。标准差也被称为标准偏差,或者实验标准差,公式如下所示:

标准差计算公式:标准差σ=方差开平方。

样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/(n-1))。

总体标准差=σ=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n )。

注解:上述两个标准差公式里的x为一组数(n个数据)的算术平均值。当所有数(个数为n)概率性地出现时(对应的n个概率数值和为1),则x为该组数的数学期望。

标准差是什么?

标准差,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。

标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同原因是它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。

标准差计算如下:

样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/(n-1))。

总体标准差=σ=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n )。

注解:上述两个标准差公式里的x为一组数(n个数据)的算术平均值。当所有数(个数为n)概率性地出现时(对应的n个概率数值和为1),则x为该组数的数学期望。

简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大一个较小的标准差,代表这些数值较接近平均值。

例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差。

标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。

当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解。因此如果测量值都落在一定数值范围之外,那么可以推论预测值是不合理的。

标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去的回报平均数值,即回报较不稳定,风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较低。

如下参考:

1.首先选择最后一个标准偏差来显示复制的单元格,如下图所示。

2.点击[start]-[autosum]旁边的三角形,就会出现一个下拉菜单。点击【其他功能】如下图所示。

3.出现[insertfunction]窗口,点击[selectcategory],选择[all],找到standarddeviation[STDEVP]函数,如下图所示。

4.单击ok后,单击箭头所指的位置并选择数据,如下图所示。

5.选择后,点击“ok”,可以看到计算出的标准差,如下图所示。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/399044.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-19
下一篇2023-05-19

发表评论

登录后才能评论

评论列表(0条)

    保存