浮点数表示方法

浮点数表示方法,第1张

浮点数是一种公式化的表达方式,用来近似表示实数,并且可以在表达范围和表示精度之间进行权衡(因此被称为浮点数)。

浮点数通常被表示为:

N=M×R^E

比如:12.345=1.2345×10^1

其中,M(Mantissa)被称为浮点数的 尾数 ,R(Radix)被称为阶码的 基数 ,E(Exponent)被称为阶的 阶码 。计算机中一般规定R为2、8或16,是一个确定的常数,不需要在浮点数中明确表示出来。

因此,在已知标准下,要表示浮点数。

一是要给出尾数M的值,通常用定点小数形式表示,它决定了浮点数的表示精度,即可以给出的有效数字的位数。

二是要给出阶码,通常用定点整数形式表示,它指出的是小数点在数据中的位置,决定了浮点数的表示范围。因此,在计算机中,浮点数通常被表示成如下格式:(假定为32位浮点数,基为2,其中最高位为符号位)。

浮点数的规格化表示

按照上面的指数表示方法,一个浮点数会有不同的表示:

0.3×10^0;0.03×10^1;0.003×10^2;0.0003×10^3。

为了提高数据的表示精度同时保证数据表示的唯一性,需要对浮点数做规格化处理。

在计算机内,对非0值的浮点数,要求尾数的绝对值必须大于基数的倒数,即|M|≥1/R。

即要求尾数域的最高有效位应为1,称满足这种表示要求的浮点数为规格化表示:把不满足这一表示要求的尾数,变成满足这一要求的尾数的操作过程,叫作浮点数的规格化处理,通过尾数移位和修改阶码实现。

ieee754标准的32位浮点规格化数是00111110110110000000000000000000。

第一,先转换为二进制数,第二,转化为规格化数,第三,按1823转化。

27/64=0.421875用二进制数表示为0.011011=1.1011×e^(-2)。

E=e+127=125用二进制数表示为01111101。

M=1011。

S=0。

SEM即:00111110110110000000000000000000。

单精度浮点数极值情况规定,最大的非规约数实际指数为-126,有偏移指数为0,指数域为00000000;最大的规约数实际指数为127,有偏移指数为254,指数域为11111110。

IEEE754标准的相关要求规定:

1、对于一个数,其二进制科学计数法表示下的指数的值,为指数的实际值;而根据IEEE 754标准对指数部分的编码的值,为浮点数表示法指数域的编码值。

2、指数偏差(表示法中的指数为实际指数减掉某个值)为 ,其中的e为存储指数的比特的长度。减掉一个值为指数必须是有号数才能表达很大或很小的数值,但是有号数通常的表示法——补码,将会使比较变得困难。

计算机组成原理:

若不对浮点数的表示作出明确规定,同一个浮点数的表示就不是唯一的。例如,十进制数可以表示成1.11×100,0.111×101,0.0111×102等多种形式。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/414949.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-23
下一篇2023-05-23

发表评论

登录后才能评论

评论列表(0条)

    保存