SEM 结构方程模型

SEM 结构方程模型,第1张

结构方程模型 (structural equation modeling,SEM)是一种建立、估计和检验因果关系模型的方法。它可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。

为何要用结构方程模型?

很多社会、心理研究中所涉及到的变量,经常不能准确、直接地测量,这种变量称为 潜变量 ,如工作自主权、工作满意度等。传统的统计分析方法不能妥善处理这些潜变量,而结构方程模型能同时很好地处理这些潜变量及其指标。

矩形是可视变量draw observed,椭圆形是潜变量draw unobserved

B站资源【推荐视频】https://www.bilibili.com/video/BV1PW411E7kz?p=14

对潜在变量(std.lv)或观察变量和潜在变量(std.all)进行标准化。sem结构方程模型数据对潜在变量(std.lv)或观察变量和潜在变量(std.all)进行标准化。SEM表示搜索引擎营销,SEM可以全面而有效地利用搜索引擎来进行网络营销和推广。

(1)功能很强大

(1)模型回归系数汇总表格

(1)路径影响关系MI-调整影响关系

相关链接:

链接1 :结构方程模型(Structural Equation Model, SEM) https://zhuanlan.zhihu.com/p/138837728

链接2 :SPSSAU教程-结构方程模型 SEMhttps://spssau.com/helps/questionnaire/semAnalyse.html

链接3 :在线spss】数据分析实战教学之结构方程模型-SPSSAU实现 https://www.bilibili.com/video/av69372102


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/418370.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-24
下一篇2023-05-24

发表评论

登录后才能评论

评论列表(0条)

    保存