洗片时,显影过程中Ag离子的作用(已经还原的银离子)

洗片时,显影过程中Ag离子的作用(已经还原的银离子),第1张

银盐CTP版材物理显影过程及银堆积形态的研究

在感光科学中,卤化银的显影过程可分为化学显影和物理显影两大类.二者的区别在于:在化学显影过程中,银离子是来自于卤化银晶格,催化银离子还原的是卤化银晶体曝光后产生的潜影中心,显影之后得到丝状金属银而在物理显影过程中,银离子是以络合离子的形式存在于溶液中,络合银离子与显影剂在物理显影核(重金属硫化物或重金属胶体粒子)的催化下发生氧化还原反应,生成的金属银沉积在物理显影核的表面,一般呈颗粒状.基于物理显影原理的银盐扩散转移体系在一步摄影、直接制版印刷等多方面得到了广泛的应用,特别是随着印刷工艺的数字化,计算机直接制版(CTP)成为印刷技术的发展方向,银盐扩散型CTP版材因其特有的优点而受到重视.在银盐型CTP体系中,银的堆积形态及密度等对版材的亲油亲水性能、耐印率有很大影响.陈萍[3]等人发现物理显影核与介质对扩散转移体系银影像的堆积形态有不同影响,造成了影像的覆盖力和色调的差异.在Hunsel①的实验中,抑制剂使物理显影银的吸收峰位置红移,表明银的堆积形态发生了变化.本文利用高分辨率的场效应扫描电子显微镜(SEM,ScanElec tronicMicroscopy)观察了曝光量、络合剂等因素对银盐CTP体系物理显影银堆积形态的影响,并利用一维线阵CCD(ChargeCoupledDevice)装置实时监测了版材的物理显影过程.

1 实验部分

1.1 实验原理

实验所用的银盐CTP版材由铝基、物理显影核层与卤化银感光层组成,如图1所示.版材经曝光后,使用显定合一的加工处理液,在曝光部分的卤化银发生化学显影的同时,未曝光部分的卤化银被加工液中的银络合剂络合成可自由移动的络合银离子,并扩散转移到物理显影核层,由显影剂还原成银.用水洗液将乳剂层洗去后,露出附着在铝基上的物理显影银影像.在印刷时,该影像区呈现亲油性,非影像区为亲水性,这样便可实现图文由印刷版向纸张的转移.

图1 银盐CTP版材加工过程示意图

1.2 实验仪器、药品

1.2.1 实验所用版材为自制的铝基银盐CTP版材,结构如图1所示.

1.2.2 显影药液主要成分:氢氧化钾、对苯二酚、亚硫酸钠、络合剂等.

1.2.3 SEM所用仪器为JSM 6301F型扫描电子显微镜.

1.2.4 监测物理显影过程的仪器为自组装的2048单元线阵CCD装置,其原理详见前文.

2 结果与讨论

2.1 不同曝光量下的物理显影银堆积形态

由于扩散转移过程中未曝光的卤化银在物理显影核层上形成正像,因此其感光特性曲线与化学显影得到的负性特性曲线相反,即未曝光区的物理显影银影像密度高,曝光区的物理显影银密度低.将CTP版材进行光楔曝光,显影加工后,利用扫描电镜观察不同曝光级的物理显影银结构,结果如图2所示.其中白色部分为金属银,黑色部分为基底,银影像的反射密度标于相应的照片下.由图中可以看出,对于不同曝光级,物理显影银都呈颗粒状.在较弱曝光级,物理显影银颗粒数目多,堆积紧密,这也是影像区呈现亲油性的主要原因.

随着曝光量的增强,银颗粒数目逐级减少,影像的反射密度也逐级降低.这是因为随着曝光量的增加,乳剂层中化学显影过程增强,消耗了卤化银,降低了络合银离子的浓度,因而在物理显影核层沉积形成的银颗粒数量减少.在较强曝光区,只有少量的物理显影银颗粒零散地分布在版材表面,银影像密度只有0 18,版材表面变成了亲水性.

图2 不同曝光级的物理显影银电镜照片

2.2 络合剂对物理显影银堆积的影响

在银盐扩散转移体系中,络合剂的主要作用是将未曝光的卤化银络合、搬运到物理显影核层.因此,络合剂将对物理显影银的形态有重要的影响.将CTP版材在含不同络合剂的显影液中加工处理,得到的版材电镜照片如图3所示.当络合剂为硫代硫酸钠时,物理显影银为大小约80~150nm、形状规则的颗粒,并且堆积紧密(图3a)当络合剂为有机胺时,得到的物理显影银呈枝状,零散地分布在版材表面,也有部分区域聚集成松散的团状(图3b),这可能与有机胺的低络合能力有关当络合剂为嘧啶化合物时,经地长时间显影,得到的银影像密度依然很低,而没有做电镜照片.

图3 不同络合剂时物理显影银电镜照片

a:硫代硫酸钠,b:有机胺,c:硫代硫酸钠+嘧啶化合物,d:有机胺+嘧啶化合物

表1列出的是三种络合剂的络合常数,其中,有机胺的络合能力比硫代硫酸钠要弱.当使用络合能力强的硫代硫酸钠时,乳剂层中未曝光的卤化银颗粒被迅速地络合溶

解,扩散到物理显影核层,经催化还原得到了较高密度的银影像.络合能力较弱的有机胺只能络合搬运少量的卤化银,得到低密度的银影像.虽然嘧啶化合物的络合常数比较高,但是在本实验中单独使用嘧啶化合物时,并没有银影像生成.这是因为嘧啶化合物与银离子形成的络合物分子体积较大,在明胶层中的扩散系数较低,转移银离子到影像接收层速度也低.因此,长时间显影也无法得到高密度的影像.这说明络合剂对扩散转移体系物理显影过程的影响主要在两个方面:络合剂与卤化银的络合速度以及络合银离子的扩散转移速度.因此,在选择络合剂时,不仅要求络合剂有足够的络合能力,还应该有较高的扩散能力.

将嘧啶化合物作为辅助络合剂加入显影液中时,得到的银颗粒形态发生了很大变化.与单独使用硫代硫酸钠时相比,加入了嘧啶化合物之后,银颗粒尺寸减小至50~120nm,堆积更加紧密(图3c).与单独使用有机胺相比,加入嘧啶化合物后,枝状银的量明显增加,影像密度也由0 27增加到0 69,并且有一些直径达300nm的大颗粒银生成,如图3d所示.这种现象可能是因为嘧啶化合物促进了乳剂层中卤化银的络合过程,并且对于络合能力差的有机胺影响较大.络合剂对物理显影过程的影响还表现在显影速率上.我们用自组装的CCD装置观察了显影过程,得到如图4所示结果.其中,曲线下降的越快,表明物理显影银的生成速度也越快.当络合剂为嘧啶化合物时,在监测时间之内,曲线没有变化,表明版材的表面基本没有物理显影银生成.

图4 络合剂对显影过程的影响

当络合剂为有机胺或硫代硫酸钠时,显影初期的显影速度都比较快.随着显影过程的进行,与硫代硫酸钠相比,有机胺作为络合剂时的显影过程很快减缓并趋于终止.我们认为,这是由于两种络合剂的络合常数不同造成的.随着显影的进行,乳剂层中的卤素离子浓度增高,受络合平衡的影响,络合常数低的有机胺已经不能将卤化银络合成可自由移动的络合银离子,从而使物理显影过程接近终止.由于硫代硫酸钠的络合常数较高,其络合平衡不受乳剂层中的卤素离子浓度的影响,因此可以使更多的卤化银被络合转移到影像接收层发生物理显影,生成的银量也较多.当硫代硫酸钠和嘧啶同时使用时,初期的显影速度得到了提高,显然是由于两种络合剂配合使用,加快了卤化银的络合及扩散过程.

2.3 温度的影响

在硫代硫酸钠作为络合剂时,分别在20℃和40℃进行显影,电镜照片见图5.由图中可以看出,显影得到的银都是较规则的球状颗粒,堆积都比较紧密,说明在该温度范围内,温度对其堆积状态没有明显的影响.但20℃时得到的颗粒直径为100~200nm,而40℃时得到的颗粒直径普遍较小,约为50~150nm.

a:20℃ b:40℃

图5 不同温度下物理显影银的电镜照片

图6是分别在20℃、30℃和40℃显影时监测到的物理显影动力学过程,从图中可以看出,随着温度的升高,曲线下降速度加快,表明物理显影速度的加快.影像密度也得到提高,依次为0 88,0 98,1 05.显然,温度的升高促进了银离子的络合、扩散及还原速度,加快了银在显影核上的沉积,而较快的沉积速度有利于尺寸较小的银颗粒的生成,从而得到如图5所示的结果.

3 结论

3.1 利用高分辨率的扫描电子显微镜观察了不同曝光区物理显影银的堆积状态,在弱曝光区银颗粒多、堆积紧密,是影像具有亲油性的主要原因.

3.2 络合剂对银颗粒的形态有显著影响:络合常数大时显影速度快,形成高密度、堆积紧密的银颗粒络合常数小时显影速度慢,形成低密度的枝状银,银络合物的扩散能力对转移过程也有很大影响.

3 3 温度较高时显影速度快,得到的银影像密度高,银颗粒尺寸较小.

不锈钢阀门以其漂亮的外观、耐腐蚀的特性、不易损坏的优点,深受人们的喜爱。

但是当不锈钢管表面出现褐色锈斑点的时候,人们会感到惊讶:为什么“不锈钢”也会生锈?生锈了那还算”不锈钢”吗?是不是材质出现了问题?

其实,这是对不锈钢一种片面的错误看法,因为不锈钢在一定的条件下也会生锈。

不锈钢具有抵抗大气氧化的能力---即不锈性,同时也具有在含酸、碱、盐的介质中乃腐蚀的能力---即耐蚀性。但其抗腐蚀能力的大小是随其钢质本身化学组成、加互状态、使用条件及环境介质类型而改变的。如304材质的不锈钢,在干燥清洁的大气中,有绝对优良的抗锈蚀能力,但将它移到海滨地区,在含有大量盐份的海雾中,很快就会生锈了;而316材质则表现良好。因此,不是任何一种不锈钢,在任何环境下都能耐腐蚀, 不生锈的。

材质为 CF8M(不锈钢316) 的进口不锈钢蝶阀在使用过程中出现锈蚀现象。奥氏体不锈钢经正常热处理后,室温下组织应为奥氏体,耐蚀性能很好。为了分析蝶阀的锈蚀原因,在其上取样进行分析。

1 试验方法

取样进行化学成分分析(判断是否符合标准要求)、金相组织检查、热处理工艺试验及 SEM 分析。

2 试验结果及分析

2.1 化学成分

化学成分分析结果及标准成分见《表 1》。

《表 1》 化学成分分析结果 / %

成分

C

Si

Mn

P

S

Cr

Ni

Mo

CF8M

0.08

1.5

1.5

0.04

0.04

18~21

9~12

2~3

蝶阀

0.10

0.60

0.61

0.024

0.009

18.05

9.71

1.45

2.2 金相分析

从出现锈蚀现象的蝶阀上切取了金相试样,经磨制抛光后,用三氯化铁水溶液腐蚀,在 Neophot-32 金相显徽镜上观察分析,其金相组织由奥氏体与另一种析出物组成。从理论上讲奥氏体不锈钢经正常热处理后,应得到均一奥氏体组织。组织中出现的另一析出物究竟是何组织,有两种判断:一是 σ 相,另一种是碳化物。σ 相与碳化物形成的条件不同,但都具有一个共同的特点,那就是造成奥氏体不锈钢对晶间腐蚀的敏感性。

首先采用了杂色法进行 σ 相的鉴别。采用碱性赤血盐水溶液(赤血盐 10g + 氢氧化钾 10g + 水 100ml),试样在该试剂中煮沸2~4 min 后,铁素体呈黄色,碳化物被腐蚀,奥氏体呈光亮色,σ 相由褐色变为黑色。用上述方法将从蝶阀上切取的试样在碱性赤血盐水溶液中煮沸 4 min 后,在显徽镜下观察,析出物保持了原形貌,未发现明显变化。因此决定采用热处理的方法进一步试脸分析。

2.3 热处理试验分析

σ 相是一种铁铬原子比例大致相等的金属间化合物。化学成分、铁素体、冷变形、温变都不同程度地对 σ 相形成产生影响。采用染色法试验,在显微镜下观察析出相变化不明显,故采用了热处理的方法来鉴别 σ 相。有关资料介绍,σ 相通常是在 500~800℃ 长期时效中形成的。这是因为较高的温度下时效有利于铬的扩散。再高温度加热 σ 相将开始溶解,溶解完毕至少要在 920℃ 以上。在高于 σ 相的稳定温度加热可使之消除。形成 σ 相所需时间虽然很长,但消除 σ 相一般只要短时间加热即可。根据这一理论,制定了热处理工艺,观察组织中的析出相是否可以消除。将从蝶阀上切取的试样加热到 940℃,保温 30 min,然后在 Neophot-32 金相显微镜上观察分析。经热处理后的试样中的析出相没有消除,并保持原形貌,由此证明了该组织中的析出相有可能不是 σ 相。

2.4 SEM 分析

有时钢中出现的 σ 相,采用任何染色的方法均无法辨别其颇色,可采用 SEM 的分析方法来鉴别。因为已知 σ 相为铁与铬的化合物,含铬量为 42%~48%,通过 EDS 定性和定量分析测出未知相的组成元素及其含量,从而确定未知相。

对基体和析出相进行的微区定量分析结果见《表 2》。

《表 2》 EDS 定量分析结果 / %

成分

Fe

Cr

Ni

Mo

Si

Mn

基体

70.463

16.365

10.211

1.239

0.466

1.257

析出相

56.908

33.629

3.681

4.835

0.040

0.907

EDS 分析结果表明,析出物的含铬量为 33.6%,明显高于基体中的 Cr 含量 16.3%,而 σ 相的含铬量是 42%~48%,因而否认析出相为 σ 相。综合染色试脸、热处理试验的结果,认为不锈钢蝶阀组织中的析出相不是 σ 相。经 SEM 观察析出相为一种共晶组织,是以铬为主的碳化物。

不锈钢蝶阀的材料为镍铬奥氏体不锈钢,这种材料一般都在固溶状态下使用。在室温状态下,其组织为奥氏体,奥氏体不锈钢在广泛的腐蚀介质中特别是大气中具有良好的抗腐蚀能力。对不锈钢蝶阀锈蚀的原因分析如下:

① 综合上述各项试验的结果,可判定蝶阀材料组织中析出相不是 σ 相,故蝶阀的锈蚀现象不是由 σ 相引起的。

② 通过 SEM 观察,确认蝶阀的组织中析出相是以铬为主的碳化物,这种共晶组织沿晶界分布。EDS 分析结果表明这种分布在晶界上的碳化物铬含量明显高于基体。这种碳化物是 M<sub>23</sub>C<sub>6</sub>型。随碳化物的析出,又得不到铬的扩散补充时,以碳化铬的形式沿奥氏体晶界析出,在碳化物周围形成贫铬区,从而奥氏体不锈钢晶界易被腐蚀。所以沿晶界析出的碳化物是造成蝶阀锈蚀的主要原因。

③ 经固溶处理后的奥氏体不锈钢,由于在高温加热时大部分碳化物被溶解,奥氏体中饱和了大量的碳与铬,并因随后的快速冷却而固定下来,使材料有很商的耐腐蚀性。因此应严格控制热处理工艺,固溶处理时将工件加热至高退,使碳化物充分溶解,然后迅速冷却,得到均一奥氏休组织。固溶处理后,如果采用缓慢冷却,在冷却过程中碳化铬将沿晶界析出,从而导致材料耐腐蚀性能降低。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/429548.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-27
下一篇2023-05-27

发表评论

登录后才能评论

评论列表(0条)

    保存