由对称相关面的各向异性生长而产生的生物成因晶体的复杂形态

由对称相关面的各向异性生长而产生的生物成因晶体的复杂形态,第1张

由对称相关面的各向异性生长而产生的生物成因晶体的复杂形态

文章出处: Emanuel M. Avrahami, Lothar Houben, Lior Aram, Assaf Gal. Complex morphologies of biogenic crystals emerge from anisotropic growth of symmetry-related facets. Science 2022 , 376 , 312-316.

摘要: 引导晶体生长到复杂的形态是具有挑战性的,因为晶体往往采用热力学稳定的形态。然而,许多生物形成的晶体具有复杂的形态,例如颗石,单细胞藻类产生的微方解石晶体阵列。颗石晶体的复杂形态被假设是由许多晶体面形成的,通过有机分子和生长晶体之间的精细调节的相互作用稳定下来。利用电子断层扫描技术,作者在三个维度上检查了多个阶段的颗石生长。作者发现晶体只表达一组对称相关的晶体面,这些面生长差异,产生高度各向异性的形状。形态手性的产生是由于晶体沿着这些切面的特定边缘定位。作者的发现表明,生长速率操纵足以产生复杂的晶体形态。

对晶体材料纳米尺度形貌的控制与它们的物理性质和潜在的应用有关。然而,晶体晶格固有的热力学性质决定了一种强烈的趋向于特定的低能量面,从而产生了特征形状(习惯)。相比之下,许多生物进化出了在非常简单的材料和环境条件下形成复杂的分层组织的晶体结构的能力。在这种生物矿化过程中,晶体的形态、成核位置、取向以及最终的形态都受到严格的控制。颗石[由称为颗石藻的单细胞藻类形成的微米大小的方解石(碳酸钙)鳞片]是生物控制晶体形态发生的一个主要例子。每个颗石由晶体亚单位组成,具有复杂的种特异性形态。颗石是在细胞内与一个特殊的囊泡形成的,称为颗石囊泡,钙和碳酸盐被输送到其中。在颗石囊泡内,晶体成核并围绕有机基底的边缘生长。

颗石结构的一个共同特征是晶体单元的交替排列,正如在V/R模型中确定的那样。根据该模型,两个单元类型组成一个颗石(一个V单元和一个R单元),具有方解石 c 轴相对于基底的垂直或径向方向。这些单元最初具有伪菱面体形态,与热力学稳定的{104}方解石菱面体非常相似。尽管如此,在完成后,它们的形态是高度复杂的,显示出各种表面,明显偏离简单的菱形习惯。

关于颗石形态发生的共识观点依赖于生物分子作为“雕塑家的工具箱”。其基本原理是,与生长晶体的特定立体化学相互作用,使这些生物分子的过程偏离稳定的热力学路径,进入局部动力学的最小值,从而产生潜在的无限形态。据推测,晶体成核是由基底外延的结果,晶体生长产生各种类型的晶体面,由“定制的”生物分子稳定。也有人认为,与手性有机改性剂的立体定向相互作用诱发方解石的手性习惯。

为了阐明颗石晶体的形态生长,作者研究了 Calcidiscus leptoporus 的大颗石,其具有特有的双屏蔽超微结构(图1A)。为了建立一个颗石生长的时间表,作者建立了一个提取细胞内颗石(ICCs)的程序。首先,在短暂的酸暴露下去除活跃钙化细胞的细胞外颗石。接下来,用低渗溶液使细胞破裂,从而释放ICCs。通过调节低渗溶液的pH值和化学性质,作者确保晶体形态不受影响。因此,ICCs充当晶体动态发展的“时间快照”。

提取的ICCs的扫描电子显微镜(SEM)图像(图1)显示了从100-200 nm的小菱形体到完全形成的手性颗石的中间形态演化序列。结构的整体手性甚至在初始单元的排列中也很明显,这类似于方解石的各向同性菱形习惯(图1E和1I)。观测到两种不同的晶体表面类型:(i) 具有直边的平面,表征两个盾牌的远侧(图1紫色箭头),(ii) 弯曲和光滑的表面,表征两个盾牌和茎区域的近侧(图1绿色箭头)。

作者使用高分辨率电子断层扫描技术在三维和不同生长阶段研究这两个单元的晶体形态。利用扫描透射电子显微镜(STEM)采集不同生长阶段的ICCs的层析图像,采用高角度环形暗场(HAADF)探测器进行三维重建。对早期生长阶段的颗石的三维分析显示,所有的晶体单元都暴露出扁平的晶体面(图2)。这些表面之间的二面角及其边缘之间的角与已知的{104}方解石菱面体的角一致,这表明只有这些稳定的晶体面显示出来。

作者观测到R单元位于它们的锐边,沿着颗石环的圆周排列(图2A),这种安排与其它物种的观测结果一致。这很有趣,有两个原因:(i) 由于几何上的考虑,与传统的V/R模型不同,将{104}菱形对齐在其锐边加强了晶体 c 轴的子径向方向,打破了径向对称,并向突出结构传递手性(图2A,青色箭头);(ii) 它挑战了外延的概念,因为晶体应该具有平行于成核表面(即基底)的小面,而不是边缘。尽管在V单元中不太清楚(初始晶体的菱形不那么明显),作者也看到晶体的 c 轴具有亚垂直倾斜,这是菱形在钝角边缘上定向的结果(图2B)。由于作者的数据缺乏导致这种晶体定向调控机制的信息,基底作为成核表面的作用仍然是一个开放的问题。

为了将形态信息与晶体的晶体学结构联系起来,作者从环形暗场(ADF) STEM中分析相邻的R单元,并结合扫描纳米束电子衍射(NBED),后者采用从光束光栅所经过的每一点收集衍射模式。分析证实了各单元之间的相对倾斜,以及每个 c 轴相对于颗石周长的子径向偏移(图2C-2E)。这些对早期ICCs的分析使作者能够将“经典”的V/R模型(该模型以 c 轴方向为中心,是手性的)细化为一个更精确的基于锐/钝边的晶体菱形的晶体学表征。这一观点将两个晶体学特征合并为一个基本结构,其中倾斜的轴和手性的超结构都起源于晶体的初始定位。

为了了解颗石晶体生长和互锁的方式,作者详细分析了单个晶体单元的形态。对5个颗石进行部分分割,反映了适合断层扫描的颗石生长阶段(图3)。推导出的“时间线”揭示了几个关键方面:(i) 两种单元类型都表现出从相对各向同性的菱形向成熟各向异性晶体的转变(图3A和3B);(ii) 两种单元类型的特征面在整个生长过程中都呈现结晶性,而一些区域(茎区、盾的近侧和相邻晶体之间的界面)保持弯曲形态(图3C);(iii) 整个晶体生长过程中类晶面之间的二面角均对应{104}习惯。

这条时间线显示了初始晶体的等效{104}晶面以各向异性的方式发展,从而产生了尺寸非常不同的成熟的{104}晶面(图3D和3E)。这些观测结果表明,晶体的复杂形态不是由各种类型的晶体面造成的,而是由化学等效{104}晶面的生长差异造成的。

观测到晶体生长只伴随着{104}晶面的表达式(图3),并且这些{104}晶面以不同的速度生长,提出了一个关键的问题,即导致这种对称性破坏的因素。这个难题来自于所有六个{104}晶面的对称性和化学等价性,这样就没有一个晶面具有与其它晶面不同的内在生长速率(即钙和碳酸盐对任何特定的{104}晶面不应该显示出关联或离解偏向)。

为了理解这些化学等效面的各向异性是如何出现的,作者分析了特定面的生长模式。观测到两种截然不同的模式:(i) 单个晶体单元的对称相关晶面对的微分生长[例如(-114)和(104)晶面,图4A],其中一个面比它的相对面和/或相邻面生长得更快,导致一个各向异性图案;(ii) 面对相同环境的两种不同单元类型(R和V单元)的面生长差异(图4B)。在后一种情况下,晶面首先出现在彼此的水平上,但最终V单位不断超过R单位(图4B)。这两个例子都显示了两个化学上相同的方面,但由于某种原因,它们的生长速度不同。

在均匀溶液中,等效晶面的各向异性生长与其相同的生长动力学是不相容的。然而,在原子尺度上,方解石的生长通过锐角和钝角两个阶段进行,每个阶段都有不同的生长动力学。因此,晶体生长环境中的纳米尺度不均匀性会导致晶体生长的各向异性。在几种颗石藻中,结晶发生在极端限制条件下,晶体和囊泡膜之间只有几十纳米的距离。这种限制直接表现在晶体形态上,如非晶体表面,这是由颗石囊泡的划界膜造成的生长的物理模块。作者提出,通过在颗石囊泡创建一个分级的纳米环境,该限域环境也直接影响晶体生长。例如,由囊泡膜上的离子转运体产生的局部离子通量可能产生浓度梯度。它仍然是必要的特征,化学和结构,细胞环境及其与生长晶体的相互作用。

图4C-4E,说明了这种浓度梯度如何在原子尺度上不同地影响生长步骤,导致等效面不同的生长动力学,从而导致各向异性生长。例如,当晶体的一个面比另一个面经历更高的离子浓度时,它将更快地向离子源生长(图4C)。更有趣的是,当不同晶体的两个相邻面呈现出不同的几何形状,它们的原子步向离子梯度(图4D),导致其中一个晶体生长更快。在纳米级梯度(图4E)的存在下,阶梯取向的差异打破了相邻晶体之间的对称性,并可以解释它们的各向异性生长。

颗石晶体生长不是一个过程,源于晶体生长的多重操纵;相反,它取决于方解石及其菱形几何结构的稳定习性所产生的各种后果。这种生长机制可以通过离子传输的速率和位置来控制,而不是通过“定制”修改特定的晶体面。作者可以想象颗石组装的初始条件的改变(例如单位取向、单位间距、离子通量方向或生长过程中的膜位置)如何显著影响最终的颗石形态。

原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分.

详细

图1. 激光检测原子力显微镜探针工作示意图

原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。

利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。

下面,我们以激光检测原子力显微镜(Atomic Force Microscope Employing Laser Beam Deflection for Force Detection,Laser-AFM)——扫描探针显微镜家族中最常用的一种为例,来详细说明其工作原理。

如图1所示,二极管激光器(Laser Diode)发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。

在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。

子力显微镜——原理图

在系统检测成像全过程中,探针和被测样品间的距离始终保持在纳米(10e-9米)量级,距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(Feedback)的作用就是在工作过程中,由探针得到探针-样品相互作用的强度,来改变加在样品扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反过来控制探针-样品相互作用的强度,实现反馈控制。

因此,反馈控制是本系统的核心工作机制。

本系统采用数字反馈控制回路,用户在控制软件的参数工具栏通过以参考电流、积分增益和比例增益几个参数的设置来对该反馈回路的特性进行控制。

编辑本段优缺点

优点

原子力显微镜观察到的图像

相对于扫描电子显微镜,原子力显微镜具有许多优点。

不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。

同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。

第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。

这样可以用来研究生物宏观分子,甚至活的生物组织。

缺点

和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。

原子力显微镜(Atomic Force Microscope)是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。

原子力显微镜与扫描隧道显微镜相比,由于能观测非导电样品,因此具有更为广泛的适用性。

当前在科学研究和工业界广泛使用的扫描力显微镜(Scanning Force Microscope),其基础就是原子力显微镜。

编辑本段仪器结构

在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。

力检测部分

在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。

所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。

微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。

微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。

这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品的特性,以及操作模式的不同,而选择不同类型的探针。

位置检测部分

原子力显微镜

在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。

在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。

反馈系统

在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。

总结

AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。

压电陶瓷是一种性能奇特的材料,当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。

而伸长或缩短的尺寸与所加的电压的大小成线性关系。

也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。

通常把三个分别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/437249.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-29
下一篇2023-05-29

发表评论

登录后才能评论

评论列表(0条)

    保存