如下参考:
1.首先选择最后一个标准偏差来显示复制的单元格,如下图所示。
2.点击[start]-[autosum]旁边的三角形,就会出现一个下拉菜单。点击【其他功能】如下图所示。
3.出现[insertfunction]窗口,点击[selectcategory],选择[all],找到standarddeviation[STDEVP]函数,如下图所示。
4.单击ok后,单击箭头所指的位置并选择数据,如下图所示。
5.选择后,点击“ok”,可以看到计算出的标准差,如下图所示。
标准误=标准差/n1/2。
n是样本量,公式打不上,只能这么写了。公式意思是:标准误等于标准差除以样本量的平方根。
标准误,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。标准误不是标准差,是多个样本平均数的标准差。标准误用来衡量抽样误差。
标准差
可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
以上内容参考:百度百科-标准差
标准误的计算公式是标准误等于标准差除以N的根号。标准误英文StandardError衡量对应样本统计量抽样误差大小的尺度,标准误用来衡量抽样误差,标准误越小表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。
标准误的特点
标准误是统计推断可靠性的指标,此外还需要特别指出的是,标准误还可以指样本标准差,方差等统计量的标准差,不仅仅只是样本均数的标准差,标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方根误差。
标准差与标准误都是数理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的,由于被测量的真值是未知数,各测量值的误差也都不知道,因此不能按上式求得标准误差。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)